ORIGINAL PAPER
Springback prediction of sheet metal hydroforming using finite element analysis and artificial neural networks
 
More details
Hide details
1
Génie Mécanique, ENSEM, Hassan II University, B.P 8118 Oasis, Casablanca, Morocco. LMPGI, Higher School of Technology of Casablanca, ESTC, Hassan II University, B.P 8112 Oasis, Casablanca, Morocco., Morocco
 
2
Génie Mécanique, ENSEM, Hassan II University, B.P 8118 Oasis, Casablanca, Morocco. LMPGI, Higher School of Technology of Casablanca, ESTC, Hassan II University, B.P 8112 Oasis, Casablanca, Morocco
 
3
Génie Mécanique, LMPGI, Ecole Supérieure de Technologie de Casablanca, ESTC, Université Hassan II, BP 8112 Oasis, Casablanca, Maroc,
 
 
Submission date: 2025-02-04
 
 
Final revision date: 2025-04-04
 
 
Acceptance date: 2025-05-22
 
 
Online publication date: 2025-09-02
 
 
Publication date: 2025-09-02
 
 
Corresponding author
YASSINE FARTOUH   

Génie Mécanique, ENSEM, Hassan II University, B.P 8118 Oasis, Casablanca, Morocco. LMPGI, Higher School of Technology of Casablanca, ESTC, Hassan II University, B.P 8112 Oasis, Casablanca, Morocco., Morocco
 
 
International Journal of Applied Mechanics and Engineering 2025;30(3):42-56
 
KEYWORDS
TOPICS
ABSTRACT
The objective of this paper is to develop a method for the rapid estimating springback in the hydroforming process of circular sheets. First, the springback behavior has been studied with using finite element simulations for various configurations such as sheet thickness, sheet diameter, and deformation pressure. The results obtained shows an excellent correlation with the experimental data. Next, the springback of circular sheets in the setting of hydroforming has been predicted using the artificial neural networks (ANN) approach. Statistical measures, specifically the mean square error (MSE) and the coefficient (R2) are implemented for evaluating this approach. The results reveal that artificial neural networks provide an accurate, high-performance model for predicting the springback of circular sheets.
REFERENCES (25)
1.
Hwang Y.M. and Manabe K.I. (2021): Latest hydroforming technology of metallic tubes and sheets.– Metals, vol.11, No.9, pp.1360, doi.org/10.3390/met11091360.
 
2.
Chinchanikar S., Mulik H., Varude P., Atole S. and Mundada N. (2024): A review of emerging hydroforming technologies: design considerations, parametric studies, and recent innovations.– Journal of Engineering and Applied Science, vol.71, No.1, pp.205, doi.org/10.1186/s44147-024-00546-z.
 
3.
Feyissa F.T. and Kumar D.R. (2019): Enhancement of drawability of cryorolled AA5083 alloy sheets by hydroforming.– Journal of Materials Research and Technology, vol.8, No.1, pp.411-423, doi.org/10.1016/j.jmrt.2018.02.012.
 
4.
Bell C., Corney J., Zuelli N. and Savings D. (2020): A state of the art review of hydroforming technology. – International Journal of Material Forming, vol.13, No.5, pp.789-828, doi.org/10.1007/s12289-019-01507-1.
 
5.
Lihui L., Kangning L., Cai G., Yang X., Guo C. and Bu G. (2014): A critical review on special forming processes and associated research for lightweight components based on sheet and tube materials.– Manufacturing Rev., vol.1, pp.9, doi.org/10.1051/mfreview/2014007.
 
6.
Landgrebe D. and Schieck F. (2015): Hot gas forming for advanced tubular automobile components: opportunities and challenges.– Proceedings of the ASME 2015 International Manufacturing Science and Engineering Conference, vol.1, Processing. Charlotte, North Carolina, USA, June 8-12, V001T02A087, doi.org/10.1115/MSEC2015-9204.
 
7.
Trzepieciński T. (2020): Forming processes of modern metallic materials.– Metals, vol.10, No.7, pp.970, doi.org/10.3390/met10070970.
 
8.
Spišák E., Majerníková J., Mulidrán P. and Hajduk J. (2025): Springback analysis and prediction of automotive steel sheets used in compression bending.– Materials, vol.18, No.4, pp.774, doi.org/10.3390/ma18040774.
 
9.
Jiang P., Lang L. and Alexandrov S. (2020): Research on springback of 5A02 aluminum alloy considering thickness normal stress in hydroforming.– In Proceedings of the Third International Conference on Theoretical, Applied and Experimental Mechanics, Springer International Publishing, pp.151-157, doi.org/10.1007/978-3-030-47883-4_26.
 
10.
Su Z., Xie W., Xu Y., Li C., Xia L., Yang B., Gao M., Song H. and Zhang S. (2024): Study on springback behavior in hydroforming of micro channels for a metal bipolar plate.– Materials, vol.17, No.21, pp.5386, doi.org/10.3390/ma17215386.
 
11.
Sun Z. and Lang L. (2017): Effect of stress distribution on springback in hydroforming process.– Int. J. Adv. Manuf. Technol., vol.93, No.5-8, pp.2773-2782, doi.org/10.1007/s00170-017-0670-x.
 
12.
Çelik Y., Ülke I., Yurdakul M. and Tansel Y. (2024): A springback minimization study using the experimental design methods for 15-5 PH stainless steel material in the hydroforming process.– World Journal of Engineering, doi.org/10.1108/WJE-08-2024-0457.
 
13.
Hiseeb H.A.J. and Khleif A.A. (2024): Experimental investigations of a springback in hydromechanical deep drawing of low carbon steel 1008 AISI.– Tikrit Journal of Engineering Sciences, vol.31, No.2, pp.20-27, doi.org/10.25130/tjes.31.2.3.
 
14.
Churiaque C., Sánchez-Amaya J.M., Caamaño F., Vazquez-Martinez J.M. and Botana J. (2018): Springback estimation in the hydroforming process of UNS A92024-T3 aluminum alloy by FEM simulations.– Metals, vol.8, No.6, pp.404, doi.org/10.3390/met8060404.
 
15.
Lam A.C.L., Shi Z., Lin J. and Huang X. (2015): Influence of residual stresses and initial distortion on springback prediction of 7B04-T651 aluminum plates in creep-age forming.– Int. J. Mech. Sci., vol.103, doi.org/10.1016/j.ijmecsci.2015.09.004.
 
16.
Fartouh Y., Dahbi Y., Nassraoui M. and Otmane B. (2022): Study of effect of material parameters on springback of hydroformed parts.– Int. Journal on Technical and Physical Problems of Engineering, vol.14, No.2, pp.360-368.
 
17.
Nassraoui M. and Radi B. (2016): Study of optimizing a tube hydroforming.– 2016 4th IEEE International Colloquium on Information Science and Technology (CiSt), Tangier, Morocco, IEEE, pp.7130-7138, doi.org/10.1109/CIST.2016.7804979.
 
18.
Śloderbach Z. (2015): Conditions of stability loss puring the test of hydraulic forming of drawpieces.– International Journal of Applied Mechanics and Engineering, vol.20, pp.917-938, doi.org/10.1515/ijame-2015-0059.
 
19.
Spathopoulos S.C. and Stavroulakis G.E. (2020): Springback prediction in sheet metal forming, based on finite element analysis and artificial neural network approach.– Applied Mechanics, vol.1, No.2, pp.97-110, doi.org/10.3390/applmech1020007.
 
20.
Dib M., Ribeiro B. and Prates P. (2018): Model prediction of defects in sheet metal forming processes. – In Engineering Applications of Neural Networks, Pimenidis E, Jayne C, editors. Cham: Springer International Publishing, pp.169-180, doi.org/10.1007/978-3-319-98204-5_14.
 
21.
Dib M., Ribeiro B. and Prates P. (2020): Single and ensemble classifiers for defect prediction in sheet metal forming under variability.– Neural. Comput. & Applic., vol.32, No.16, pp.12335-12349, doi.org/10.1007/s00521-019-04651-6.
 
22.
Nassraoui M. and Radi B. (2020): An exploratory study of the sheet hydroforming process.– IncertFia vol.4. No.1, doi.org/10.21494/ISTE.OP.2020.0567.
 
23.
Nassraoui M., Zakaria E. and Bouchaib R. (2018): Experimental characterization of hydroforming.– IncertFia, vol.2, No.1, doi.org/10.21494/ISTE.OP.2018.0255.
 
24.
Ghazouani N., Toumi M., Aladeb A., Salah W., Tashkandi M. and Becheikh N. (2024): The characterization of the plastic instability of S235 thin steel sheets by multiple regression and analysis of variance methods.– Mechanics, vol.30, No.1, pp.5-13, doi.org/10.5755/j02.mech.34036.
 
25.
Ben Abdessalem M.A. (2011): Optimization with taking into account of uncertainties in hydroformig process.– Theses, INSA de Rouen.
 
eISSN:2353-9003
ISSN:1734-4492
Journals System - logo
Scroll to top