ORIGINAL PAPER
Flow and heat transfer of Hybrid Jeffrey Nanofluid near a Riga Plate with Non-linear Convection
More details
Hide details
1
Department of Mathematics, Pandit Deendayal Energy University, India
2
School of Computer Science and Applied Mathematics, Faculty of Science, University of the Witwatersrand., South Africa
3
Institute of Management, Nirma University, India
Submission date: 2024-12-23
Final revision date: 2025-02-10
Acceptance date: 2025-04-07
Online publication date: 2025-09-02
Publication date: 2025-09-02
International Journal of Applied Mechanics and Engineering 2025;30(3):57-74
KEYWORDS
TOPICS
ABSTRACT
Hybrid nanofluid, an extension of nanofluid, is the hybridization of dissimilar type of nanoparticles dispersed into the base fluid. Engineers, manufacturers and developers are fascinated to imply hybrid nanofluid in various applications such as, biomedical, electronic generators, heat pipes, refrigerations, transformer cooling and heat exchangers due to its unique speciality in terms of thermophysical properties, heat transfer performance and stability. The present study deals on heat transfer in an unsteady magnetohydrodynamic hybrid nanoliquid composed of (i) silver and gold and (ii) aluminium oxide and copper oxide nanoparticles considering base fluid as ethylyne glycol, flow over a Riga plate. The impact of viscous dissipation, non-linear convection, magnetic field and convective boundary condition are also integrated in this study. The nonlinear and coupled partial differential equations, which describe the flow system, are nondimensionalized keeping in same form. Solution of nondimensionalized PDEs is reaped by exercising spectral quasilinearization method. The substantiation of convergence and accuracy is also presented. Obtained solutions are presented in terms of graphs and tables to survey the flow and temperature behaviours. It is found that fluid velocity is smaller in the hybrid nanofluid containing silver and gold nanoparticles whereas an improved heat transfer rate is seen for hybrid nanoliquid containing aluminium oxide and copper oxide nanoparticles. This study may be helpful in various scientific and industrial applications concerning boundary layer separation and heat transfer.
REFERENCES (43)
1.
Choi S.U.S. and Eastman J.A. (1995): Enhancing thermal conductivity of fluids with nanoparticles.– ANL/MSD/CP-84938; CONF-951135-29. Argonne National Lab.(ANL), Argonne, IL (United States).
2.
Alrabaiah H., Bilal H.M., Khan M.A., Muhammad T. and Legas E.Y. (2021): Time fractional model of electro-osmotic Brinkman-type nanofluid with heat generation and chemical reaction effects: Application in cleansing of contaminated water.– Scientific Reports, vol.11, No.24402,
https://doi.org/10.1038/s41598....
3.
Molana M., Ghasemiasl R. and Armaghani T. (2022): A different look at the effect of temperature on the nanofluids thermal conductivity: focus on the experimental-based models.– J. Thermal Analysis and Calorimetry, vol.147, pp.4553-4577,
https://doi.org/10.1007/s10973....
4.
Alagumalai A., Qin C., Vimal K.E.K., Solomin E., Yang L., Zhang P., Otanicar T., Kasaeian A., Chamkha A.J., Rashidi M.M., Wongwises S., Ahn H.O., Lei Z., Saboori T. and Mahian O. (2022): Conceptual analysis framework development to understand barriers of nanofluid commercialization.– Nano Energy, vol.92, No.106736,
https://doi.org/1 0.1016 /j.nanoen. 2021.106736.
5.
Arif M., Ali F., Sheikh N.A. and Khan I. (2019): Enhanced heat transfer in working fluids using nanoparticles with ramped wall temperature: applications in engine oil.– Advances in Mechanical Engineering, vol.11, No.11,
https://doi.org/10.1177/168781....
6.
Ali F., Arif M., Khan I., Sheikh N.A. and Saqib M. (2018): Natural convection in polyethylene glycol-based molybdenum disulfide nanofluid with thermal radiation, chemical reaction and ramped wall temperature.– Int. J. Heat Technology, vol.36, No.2, pp.619-631,
https://doi.org/10.18280/ijht.....
7.
Iqbal Z., Khan M., Shoaib M., Matoog, R.T., Muhammad T. and El-Zahar E.R. (2022): Study of buoyancy effects in unsteady stagnation point flow of Maxwell nanofluid over a vertical stretching sheet in the presence of Joule heating.–Waves in Random and Complex Media, pp.1-15,
https://doi.org/10.1080/174550....
8.
Senthilvadivu K., Eswaramoorthi S., Loganathan K. and Abbas M. (2024): Time-dependent Darcy Forchheimer flow of Casson hybrid nanofluid comprising the CNTs through a Riga plate with nonlinear thermal radiation and viscous dissipation.– Nanotechnology Reviews, vol.13, No.1, pp.2023-0202,
https://doi.org/10.1515/ntrev-....
9.
Ganga U.R., Janaiah Ch., and Goud B.S. (2024): Thermal diffusion and diffusion thermo effects on axi-symmetric boundary layer flow of nanofluid due to non-linear stretching sheet along the radial direction in presence of magnetic field.– Int. J. Applied Mechanics and Engineering, vol.29, No.3, pp.32-46,
https://doi.org/10.59441/ijame....
10.
Mesbah A., Allouaoui R., Bouaziz A.M., and Bouaziz N.M. (2024): Entropy generation analysis of MHD micropolar-nanofluid flow over a moved and permeable vertical plate.– Int. J. Applied Mechanics and Engineering, vol.29, No.1, pp.73-89, DOI:
https://doi.org/10.59441/ijame....
11.
Medisetty P.D., Suripeddi S., Kuppalapalle V. and Badeti S. (2024): Pulsatile MHD flow of two immiscible nanofluid through a porous channel with slip effects.– Int. J. Applied Mechanics and Engineering, vol.29, No.1, pp.105-129,
https://doi.org/10.59441/ijame....
12.
Samad Khan A., Gul T., Muhammad T., Ali Yousif B.A. and Shaaban A.A. (2024): Hybrid nanofluids flow over a Riga plate surrounded by a variable porous medium for heat transfer optimization.– Numerical Heat Transfer, Part A: Applications, pp.1-15,
https://doi.org/10.1080/104077....
13.
Bilal M., Maiz F., Farooq M., Ahmad H., Nasrat M.K. and Ghazwani H.A. (2025): Novel numerical and artificial neural computing with experimental validation towards unsteady micropolar nanofluid flow across a Riga plate.– Sci. Rep., vol.15, p.759,
https://doi.org/10.1038 /s41598-024-84480-3.
14.
Tlili I., Nabwey H.A., Ashwinkumar G.P. and Sandeep. N. (2020): 3-D magnetohydrodynamic AA7072-AA7075/methanol hybrid nanofluid flow above an uneven thickness surface with slip effect.– Scientific Reports, vol.10, No.4265,
https://doi.org/10.1038/s41598....
15.
El-Zahar E.R., Rashad A.M., Saad W. and Seddek L.F. (2020): Magneto-hybrid nanofluids flow via mixed convection past a radiative circular cylinder.– Scientific Reports, vol.10, p.10494,
https://doi.org/10.1038/s41598....
16.
Alarabi T., Rashad A.M. and Mahdy A. (2021): Homogeneous–heterogeneous chemical reactions of radiation hybrid nanofluid flow on a cylinder with Joule heating: nanoparticles shape impact.– Coatings, vol.11, p.1490,
https://doi.org/10.3390/ coatings1112149.
17.
Mahdy A., Rashad A.M., Saad W. and Al-Juaydi H. (2021): The magneto-natural convection flow of a micropolar hybrid nanofluid over a vertical plate saturated in a porous medium.– Fluids, vol.6, p.202, https:// doi.org/10.3390/fluids606020.
18.
El-Zahar E.R., Mahdy A.E.N., Rashad A.M., Saad W., and Seddek L.F. (2021): Unsteady MHD mixed convection flow of non-Newtonian Casson hybrid nanofluid in the stagnation zone of sphere spinning impulsively.– Fluids, vol.6, No.6, pp.197,
https://doi.org/10.3390/fluids....
19.
Hossam A.N., Rashad A.M. and Waqar K. (2021): Slip microrotation flow of silver-sodium alginate nanofluid via mixed convection in a porous medium.– Mathematics, vol.9, pp.3232,
https://doi.org/10.3390/math92....
20.
Zhang L., Bhatti M.M, Michaelides E.E., Marin M. and Ellahi R. (2022): Hybrid nanofluid flow towards an elastic surface with tantalum and nickel nanoparticles, under the influence of an induced magnetic field.– The European Physical Journal Special Topics, vol.231, No.3, pp.521-533,
https://doi.org/10.1140/epjs/s....
21.
Lone S.A., Alyami M.A., Saeed A., Dawar A., Kumam P. and Kumam W. (2022): MHD micropolar hybrid nanofluid flow over a flat surface subject to mixed convection and thermal radiation.– Scientific Reports, vol.12, No.17283,
https://doi.org/10.1038/s41598....
22.
Rekha M.B., Sarris I.E., Madhukesh J.K., Raghunatha K.R. and Prasannakumara B.C. (2022): Activation energy impact on flow of AA7072-AA7075/water-based hybrid nanofluid through a cone, wedge, and plate.– Micromachines, vol.13, No.2, pp.302,
https://doi.org/10.3390/mi1302....
23.
Verma L., Meher R., Hammouch Z. and Baskonus H.M. (2022): Effect of heat transfer on hybrid nanofluid flow in converging/diverging channel using fuzzy volume fraction.-Scientific Reports, vol.12, No.20845,
https://doi.org/10.1038/s41598....
24.
Jaafar A., Waini I., Jamaludin A., Nazar R. and Pop I. (2022): MHD flow and heat transfer of a hybrid nanofluid past a nonlinear surface stretching/shrinking with effects of thermal radiation and suction.– Chinese Journal of Physics, vol.79, pp.13-27,
https://doi.org/10.1016/j.cjph....
25.
Ullah H. Abas S.A., Fiza M., Khan I., Rahimzai A.A. and Akgul A. (2024): A numerical study of heat and mass transfer characteristic of three-dimensional thermally radiated bi-directional slip flow over a permeable stretching surface.– Scientific Reports, vol.14, No.19842,
https://doi.org/10.1038/s41598....
26.
Rao S. and Deka P.N. (2024): Numerical analysis of MHD hybrid nanofluid flow over a porous stretching sheet with thermalradiation.– Int. J. Appl. Comput. Math., vol.10, No.95,
https://doi.org/10.1007/s40819....
27.
Verma L. and Meher R. (2024): Study on MHD hybrid nanofluid flow with heat transfer in a stretchable converging/diverging channel embedded in a porous medium with uncertain volume fraction.– Numerical Heat Transfer, Part B: Fundamentals, pp.1-32,
https://doi.org/10.1080/104077....
28.
Imoro I., Etwire C.J. and Musah R. (2024): MHD flow of blood-based hybrid nanofluid through a stenosed artery with thermal radiation effect.– Case Studies in Thermal Engineering, vol.59, No.104418,
https://doi.org/10.1016/j.csit....
29.
Naik R.N., Suneetha S., Babu K.S.S. and Babu M.J. (2024): Entropy optimization in ternary hybrid nanofluid flow over a convectively heated bidirectional stretching sheet with Lorentz forces and viscous dissipation: a Cattaneo–Christov heat flux model.– Proceedings of the Institution of Mechanical Engineers, Part E: J. Process Mechanical Engineering,
https://doi.org/10.1177/095440....
30.
Tao H., Aldlemy M.S., Homod R.Z., Aksoy M., Mohammed M.K.A., Alawi O.A., Togun, H., Goliatt L., Khan M.M.H. and Yaseen Z.M. (2024): Hybrid nanocomposites impact on heat transfer efficiency and pressure drop in turbulent flow systems: application of numerical and machine learning insights.– Scientific Reports, vol.14, No.19882,
https://doi.org/10.1038/s41598....
31.
Maiti H., Mukhopadhyay S. and Vajravelu K., (2024): Hybrid nanofluid flow over an unsteady stretching/shrinking disk with thermal radiation.– Int. J. Modern Physics B, vol.38, No.7, pp.2450220,
https://doi.org/10.1142/S02179....
32.
Ansari M.S., Magagula V.M. and Trivedi M. (2020): Jeffrey nanofluid flow near a Riga plate: spectral quasilinearization approach.– Heat Transfer, vol.49, No.3, pp.1491-1510,
https://doi.org/10.1002/htj.21....
33.
Prabakaran R., Eswaramoorthi S., Loganathan K. and Gyeltshen S. (2022): Thermal radiation and viscous dissipation impacts of water and kerosene-based carbon nanotubes over a heated Riga sheet.– Journal of Nanomaterials, vol.2022, Article ID 1865763,
https://doi.org/10.1155/2022/1....
34.
Wahid N.S., Arifin N.M., Khashi’ie N.S., Pop I., Bachok N. and Hafidzuddin M.E.H. (2022): Hybrid nanofluid stagnation point flow past a slip shrinking Riga plate.– Chinese Journal of Physics, vol.78, pp.180-193,
https://doi.org/10.1016/j.cjph....
35.
Ali A., Ahmed M., Ahmad A. and Nawaz R. (2023): Enhanced heat transfer analysis of hybrid nanofluid over a Riga plate: Incorporating Lorentz forces and entropy generation.– Tribology International, vol.188, No.108844,
https://doi.org/10.1016/j.trib....
36.
Algehyne E.A., Lone S.A., Raizah Z., Eldin S.M., Saeed A. and Galal M. (2023): Chemically reactive hybrid nanofluid flow past a Riga plate with nonlinear thermal radiation and a variable heat source/sink.– Frontiers in Materials, vol.10, p.1132468,
https://doi.org/10.3389/fmats.....
37.
Yasmin H., Hejazi H.A., Lone S.A., Raizah Z. and Saeed A. (2023): Time-independent three- dimensional flow of a water-based hybrid nanofluid past a Riga plate with slips and convective conditions: a homotopic solution.– Nanotechnology Reviews, vol.12, No.1, pp.20230183,
https://doi.org/10.1515/ntrev-....
38.
Siddique I., Khan Y., Nadeem M., Awrejcewicz J. and Bilal M. (2023): Significance of heat transfer for second-grade fuzzy hybrid nanofluid flow over a stretching/shrinking Riga wedge.– AIMS Mathematics, vol.8, No.1, pp.295-316, doi: 10.3934/math.2023014.
39.
Khan A.S., Ishaq M., Awwad F.A., Ismail E.A.A. and Gul T. (2024): Flow of Magnetohydrodynamic blood-based hybrid nanofluids with double diffusion in the presence of Riga plate for heat optimization and drug applications.– Advances in Mechanical Engineering, vol.16, No.5,
https://doi.org/10.1177/168781....
40.
Upreti H., Mishra S.R., Pandey A.K. and Pattnaik P.K. (2024): Thermodynamics analysis of Casson hybrid nanofluid flow over a porous Riga plate with slip effect.– Int. J. Multiphysics and Multiscale Computing Engineering, vol.22, No.5, pp.19-34, doi: 10.1615/IntJMultComp Eng.2023043190.
41.
Royand N.C. and Pop I. (2021): Exact solutions of Stokes’ second problem for hybrid nanofluid flow with heat transfer.– Physics of Fluids, vol.33, No.6, p.063603,
https://doi.org/10.1063 /5.0054576.
42.
Saqib M., Khan I. and Shafie S. (2019): Application of fractional differential equations to heat transfer in hybrid nanofluid: modelling and solution via integral transforms.– Advances in Differential Equations, vol.2019, No.52,
https://doi.org/10.1186/s13662....
43.
Zulkiflee F., Shafie S. and Mohamad A.Q. (2020): Unsteady free convection flow of nanofluids between vertical oscillating plates with mass diffusion.– J. Advanced Research in Fluid Mechanics and Thermal Sciences, vol.76, No.2, pp.118-131.