ORIGINAL PAPER
Influence of couple stress and magnetic fluid on the performance of step slider bearing
 
 
More details
Hide details
1
Department of Mathematical Sciences, P.D. Patel Institute of Applied Sciences (PDPIAS), Charotar University of Science and Technology (CHARUSAT), Changa – 388 421, Anand, Gujarat, INDIA
 
2
Department of Mathematics, Shri Alpesh N. Patel Postgraduate Institute of Science & Research, Sardar Patel University, Anand – 388 001, Gujarat, INDIA
 
3
Department of Mathematics,, Sardar Patel University, Vallabh Vidyanagar – 388 120, Anand, Gujarat, India., India
 
These authors had equal contribution to this work
 
 
Submission date: 2024-09-29
 
 
Final revision date: 2024-11-23
 
 
Acceptance date: 2025-03-07
 
 
Online publication date: 2025-09-02
 
 
Publication date: 2025-09-02
 
 
Corresponding author
JIMIT R. PATEL   

Department of Mathematical Sciences, P. D. Patel Institute of Applied Sciences (PDPIAS), Charotar University of Science and Technology (CHARUSAT), CHARUSAT campus, Changa , Gujarat, India., 388421, Anand, India
 
 
International Journal of Applied Mechanics and Engineering 2025;30(3):26-41
 
KEYWORDS
TOPICS
ABSTRACT
This theoretical investigation delves into the performance of step slider bearings, considering the influence of couple stress and magnetic fluid as the lubricating medium. Employing a non-linear model for magnetic field intensity aims to optimize bearing performance. Modifying the Reynolds equation for step slider bearings incorporates theories from Neuringer and Rosensweig for magnetic fluid flow dynamics and the Stokes micro-continuum model to account for couple stress effects. Solving the Reynolds equation with appropriate boundary conditions determines key parameters such as pressure, load capacity, center of pressure, and frictional force. Analytical formulations for load-bearing capacity and pressure distribution are produced, and MATLAB is used to analyse the integrals that appear in these two expressions. The results of the investigation are then explained via graphical representations. The findings demonstrate a notable improvement in load-carrying capacity ferrofluid based system as compared to non-magnetic fluid. Additionally, increasing coupling stress and magnetization parameters results in a drop in the frictional coefficient and an increase in both load capacity and frictional force. The use of magnetic fluid lubrication significantly increases the beneficial effects of couple stress fluids. It is discovered that the impact of magnetic fluid lubrication increases the load-carrying capacity by at least 22.30 % in the presence of couple stress. The synergistic effect of couple stress and magnetic fluid lubrication demonstrates the potential for optimizing the bearing performance beyond conventional methods.
REFERENCES (43)
1.
Naduvinamani N.B. and Angadi A. (2024): Surface roughness influence on the dynamic performance of Rayleigh step bearing lubricated with couple stress fluid.– Proc. Natl. Acad. Sci. India Sect. A Phys. Sci., vol.94, No.2, pp.235-247, doi: https://doi.org/10.1007/s40010....
 
2.
Kasinath B and Upadhya A.C. (2024): Performance of an inclined plane porous slider bearing lubricated with couple stress fluid: effect of slip velocity and squeeze velocity.– Journal of Nonlinear Analysis and Optimization, vol.15, No.4, pp.1906-9685.
 
3.
Kasinath B. and Upadhya A.C. (2024): An analysis of the performance of secant - shaped porous slider bearing lubricated with couple stress fluid under the effect of slip velocity and squeeze velocity.– Journal of Nonlinear Analysis and Optimization, vol.15, No.2, pp.1906-9685.
 
4.
Naduvinamani N.B. and Siddangouda A. (2007): Effect of surface roughness on the hydrodynamic lubrication of porous step-slider bearings with couple stress fluids.– Tribol. Int., vol.40, No.5, pp.780-793, doi: 10.1016/j.triboint.2006.07.003.
 
5.
Rahmani R., Shirvani A. and Shirvani H. (2009): Analytical analysis and optimization of the Rayleigh step slider bearing.– Tribol. Int., vol.42, No.5, pp.666-674, doi: https://doi.org/10.1016/j.trib....
 
6.
Maiti G. (1973): Composite and step slider bearings in micropolar fluid.– Jpn. J. Appl. Phys., vol.12, No.7, pp.1058-1064, doi: 10.1143/JJAP.12.1058.
 
7.
Das N.C. (1998): A study of optimum load-bearing capacity for slider bearings lubricated with couple stress fluids in magnetic field.– Tribol. Int., vol.31, No.7, pp.393-400, doi: https://doi.org/10.1016/S0301-....
 
8.
Barik M., Mishra S.R. and Dash G.C. (2016): Effect of sinusoidal magnetic field on a rough porous hyperbolic slider bearing with ferrofluid lubrication and slip velocity.– Tribol. Mater. Surfaces Interfaces, vol.10, No.3, pp.131-137, doi: 10.1080/17515831.2016.123584 3.
 
9.
Vinutha R., Hanumagowda B.N. and Vasanth K.R. (2024): Effect of magnetic field and slip velocity on the performance of bearings lubricated by couple stresses fluid on long cylinder and infinite plate - a theoretical analysis.– Modern Physics Letters B., vol.38, No.30, doi: https://doi.org/10.1142/S02179....
 
10.
Devani U., Patil J., Bilal S., Hanumagowda B.N., Trimbak V.B., Tawade J.V., Nazarova N. and Gupta M. (2024): Study of MHD on porous flat and curved circular plate lubricated with couple stress fluid - a slip velocity mode.– Results in Engineering., vol.24, pp.102914, doi: https://doi.org/10.1016/j.rine....
 
11.
Patil J., Naganagowda H.B., Neela D., Patil V., Hiremath A.G., Birdar T.V. and Patil V. (2024): Analysis of MHD effects on porous flat and curved circular plate with couple stress fluid.– Journal of Advanced Research in Fluid Mechanics and Thermal Sciences, vol.120, No.2, pp.82-98, doi: https://doi.org/10.37934/arfmt....
 
12.
Naduvinamani N.B., Fathima S.T. and Hiremath P.S. (2003): Hydrodynamic lubrication of rough slider bearings with couple stress fluids.– Tribol. Int., vol.36, No.12, pp.949-959, doi: https://doi.org/10.1016/S0301-... 092-6.
 
13.
Lin J.R., Chu L.M. and Liaw W.L. (2012): Effects of non-Newtonian couple stresses on the dynamic characteristics of wide Rayleigh step slider bearings.– J. Mar. Sci. Technol., vol.20, No.5, pp.547-553, doi: 10.6119/JMST-011-0506-5.
 
14.
Kasinath B. and Hanumagowda B.N. (2014): MHD effects on composite slider bearing lubricated with couple-stress fluids.– Int. J. Math. Trends Technol., vol.5, No.1, pp.27-49, doi: 10.14445/22315373/ijmtt-v5p520.
 
15.
Naduvinamani N.B. and Angadi A. (2022): Static and dynamic characteristics of rough porous Rayleigh step bearing lubricated with couple stress fluid.– Lubricants, vol.10, No.10, pp.257, doi:10.3390/lubricants10100257.
 
16.
Naduvinamani N.B. and Ganachari R. (2022): Double-layered porous Rayleigh step slider bearings lubricated with couple stress fluids.– Indian J. Sci. Technol., vol.15, No.28, pp.1389-1398, doi:10.17485/IJST/v15i28 .33.
 
17.
Anthony J. and Elamparithi S. (2023): Effect of MHD and surface roughness on porous step-slider bearing lubricated with couple-stress fluid.– Int. J. Heat Technol., vol.41, No.1, pp.135-142, doi: https://doi.org/10.18280/ijht.... 0114.
 
18.
Gomathi G. and Poulomi De. (2024): Entropy optimization on EMHD Casson Williamson penta- hybrid nanofluid over porous exponentially vertical cone.– Alexandria Engineering Journal, vol.108, pp.590-610.
 
19.
Amudhini M. and Poulomi De. (2024): Comparative study of hybrid, tri-hybrid and terta-hybrid nanoparticles in MHD unsteady flow with chemical reaction, activation energy, Soret-Dufour effect and sensitivity analysis over Non-Darcy porous stretching cylinder.– Heliyon, vol.10, pp.e35731, doi: https://doi.org/10.1016/j.heli....
 
20.
Sangeetha E. and Poulomi De. (2024): Stagnation point flow of bioconvective MHD nanofluids over Darcy Forchheimer porous medium with thermal radiation and Buoyancy effect.– BioNanoSci, vol.13, pp.1022-1035. doi: https://doi.org/10.1007/s12668....
 
21.
Shah R.C. and Bhat M.V. (2005): Lubrication of porous parallel plate slider bearing with slip velocity, material parameter and magnetic fluid.– Ind. Lubr. Tribol, vol.57, No.3, pp.103-106, doi: 10.1108/00368790510595066.
 
22.
Patel N.D. and Deheri G.M. (2011): Based parallel plate porous slider bearing with slip velocity.– J. Serb. Soc. for Comp. Mech., vol.5, No.1, pp.104-118.
 
23.
Shukla S. and Deheri G.M. (2013): Effect of slip velocity on magnetic fluid lubrication of rough porous Rayleigh step bearing.– J. Mech. Eng. Sci., vol.4, No.1, pp.532-547, doi: 10.15282/jmes.4.2013.17.0050.
 
24.
Shah R.C. and Patel N.I. (2015): Impact of various and arbitrary porous structure in the study of squeeze step bearing lubricated with magnetic fluid considering variable magnetic field.– Proc. Inst. Mech. Eng. Part J, J. Eng. Tribol, vol.229, No.5, pp.646-659, doi: 10.1177/135 0650114556396.
 
25.
Deheri G.M. and Patel J.R. (2011): Magnetic fluid based squeeze film in a rough porous parallel plate slider bearing.– Int. J. Eng., vol.9, No.3, pp.443-448.
 
26.
Patel J.R. and Deheri G.M. (2016): A study of thin film lubrication at nanoscale for a ferrofluid based infinitely long rough porous slider bearing.– Facta Univ. Ser. Mech. Eng., vol.14, No.1, pp.89-99, doi: 10.22190/FUME1601089P.
 
27.
Patel J.R. and Deheri G.M. (2016): Performance of a ferrofluid based rough parallel plate slider bearing: a comparison of three magnetic fluid flow models.– Adv. Tribol., vol.2016, No.3, pp.1-9, doi: 10.1155/2016/ 8197160.
 
28.
Andharia P.I. and Pandya H.M. (2018): Effect of longitudinal surface roughness on the performance of Rayleigh step bearing.– Int. J. Appl. Eng. Res., vol.13, No.21, pp.14935-14941.
 
29.
Patel D.A., Joshi M. and Patel D.B. (2021): Design of porous step bearing by considering different ferrofluid lubrication flow models.– J. Manuf. Eng., vol.16, No.4, pp.108-114, doi: 10.37255/jme.v16i4pp108-114.
 
30.
Patel N.C., Patel J.R., Deheri G.M. (2023): An effect of a porous structure, slip velocity and Rosensweig’s viscosity on the ferrofluid based squeeze film in porous curved annular plates.– Journal of Nanofluids, vol.12, No.2, pp.498-505, doi: https://doi.org/10.1166/jon.20....
 
31.
Patel R.M., Deheri G.M. and Patel H.C. (2009): Analysis of squeeze film performance between rough porous infinitly long parallel plates with porous matrix of non-uniform thickness under presence of magnetic fluid lubricant.– Tribology, Materials, Surfaces & Interfaces, vol.3, No.2, pp.49-55, doi: https://doi.org/10.1179/175158....
 
32.
Patel J.R., Shimpi M.E. and Deheri G.M. (2017): Ferrofluid based squeeze film for a rough conical bearing with deformation effect.– Int. Conf. Res. Invoat. Sci. Eng. Technol. Kalpa Publ. Comput., vol.2, pp.119-129.
 
33.
Deheri G.M., Patel J.R. and Patel N.D. (2016): Shlimois model based ferrofluid lubrication of a rough porous convex pad slider bearing.– Tribology in Industry, vol.38, No.1, pp.57-65.
 
34.
Ariman T., Turk M.A. and Sylvester N.D. (1973): Microcontinuum fluid mechanics-A review.– Int. J. Eng. Sci., vol.11, No.8, pp.905-930, doi: 10.1016/0020-7225(73)90038-4.
 
35.
Ariman T., Turk M.A. and Sylvester N.D. (1974): Article applications of microcontinuum fluid mechanics.– Int. J. Eng. Sci., vol.12, No.6, pp.273-293.
 
36.
Stokes V.K. (1966): Couple stresses in fluids.– Phys. Fluids., vol.9, pp.1709-1715, doi: 10.1063/1.1761925.
 
37.
Stokes V.K. (1968): Effects of couple stresses in fluids on hydromagnetic channel flows.– Phys. Fluids., vol.11, pp.1131-1133, doi: 10.1063/1.1692056.
 
38.
Stokes V.K. (1971): Effects of couple stresses in fluids on the creeping flow past a sphere.– Phys. Fluids., vol.14, pp.1580-1582, doi: 10.1063/1.1692056.
 
39.
Ramanaiah G. and Sarkar, P. (1978): Squeeze films and thrust-bearings lubricated by fluids with couple stress.– Wear, vol.48, pp.309-316, doi: https://doi.org/10.1016/0043-1....
 
40.
Cameron A. (1971): Basic Lubrication Theory.– Longman, Harlow, Essex.
 
41.
Neuringer J.L. and Rosensweig R.E. (1964): Ferrohydrodynamics.– Phys. Fluids, vol.7, No.12, pp.1927-1937, doi: https://doi.org /10.1063/ 1.1711103.
 
42.
Prajapati B.L. (1995): On Certain Theoretical Studies in Hydrodynamic and Electro-Magneto Hydrodynamic Lubrication.– Ph.D. Thesis, Sardar Patel University, Vallabh Vidya-Nagar, Anand, Gujarat, India.
 
43.
Bhat M.V. (2003): Lubrication with Magnetic fluid.– Team Spirit (India), Pvt. Ltd, India.
 
eISSN:2353-9003
ISSN:1734-4492
Journals System - logo
Scroll to top