ORIGINAL PAPER
Modeling and Optimization of Cutting Parameters When Turning EN-AW-1350 Aluminum Alloy
,
 
,
 
,
 
,
 
 
 
 
More details
Hide details
1
Laboratory of Mechanics, Chaabet-Ersas Campus, Mechanical Eng. Dept., Université Frères Mentouri, 25000, Constantine -1, Algeria
 
2
Mechanics and Structures Research Laboratory (LMS), Mechanical Eng. Dept., Université 8 Mai 1945 Guelma, BP 401, 24000, Guelma, Algeria
 
3
Mechanics of Materials and Industrial Maintenance Research Laboratory (LR3MI), Mechanical Eng. Dept., Badji Mokhtar University, PO Box 12, 23052, Annaba, Algeria
 
4
Applied Mechanics for New Materials Laboratory (LMANM), Mechanical Eng. Dept., Université 8 Mai 1945 Guelma, BP 401, 24000, Guelma, Algeria
 
 
Online publication date: 2022-06-14
 
 
Publication date: 2022-06-01
 
 
International Journal of Applied Mechanics and Engineering 2022;27(2):124-142
 
KEYWORDS
ABSTRACT
An experimental investigation is carried out to examine the effects of various cutting parameters on the response criteria when turning EN-AW-1350 aluminum alloy under dry cutting conditions. The experiments related to the analysis of the influence of turning parameters on the surface roughness (Ra) and material removal rate (MRR) were carried out according to the Taguchi L27 orthogonal array (313) approach. The analysis of variance (ANOVA) was applied to characterizing the main elements affecting response parameters. Finally, the desirability function (DP) was applied for a bi-objective optimization of the machining parameters with the objective of achieving a better surface finish (Ra) and a higher productivity (MRR). The results showed that the cutting speed is the most dominant factor affecting Ra followed by the feed rate and the depth of cut. Moreover, the Artificial Neural Network (ANN) approach is found to be more reliable and accurate than its Response Surface methodology (RSM) counterpart in terms of predicting and detecting the non-linearity of the surface roughness and material removal rate mathematical models. ANN provided prediction models with a precision benefit of 8.21% more than those determined by RSM. The latter is easier to use, and provides more information than ANN in terms of the impacts and contributions of the model terms.
 
REFERENCES (36)
1.
Kivak T., Samtaş G. and Çiçek A. (2012): Taguchi method based optimization of drilling parameters in drilling of AISI 316 steel with PVD monolayer and multilayer coated HSS drills.– Measurement, vol.45, No.6, pp.1547-1557.
 
2.
Chen Y., Sun R., Gao Y. and Leopold J. (2017): A nested-ANN prediction model for surface roughness considering the effects of cutting forces and tool vibration.–Measurement, vol.98, pp.25-34.
 
3.
Mikołajczyk T., Nowicki K., Bustillo A. and Pimenov D.Y. (2018): Predicting tool life in turning operations using neural networks and image processing.–Mechanical Systems and Signal Processing, vol.104, pp.503-513.
 
4.
Klocke RF., Lortz W. and Trauth D. (2018): Analysis of the dynamic chip formation process in turning.– International Journal of Mechanical Sciences, vol.135, pp.313-324.
 
5.
Garcia N., Feix E.C., Mendel H.T., Gonzalez A.R. and Souza A.J. (2012): Optimization of cutting parameters for finish turning of 6082-T6 aluminum alloy under dry and RQL conditions.– Journal of the Brazilian Society of Mechanical Sciences and Engineering, vol.41, No.8, pp.1-10.
 
6.
Bhushan R.K. (2020): Impact of nose radius and machining parameters on surface roughness, tool wear and tool life during turning of AA7075/SiC composites for green manufacturing.– Mechanics of Advanced Materials and Modern Processes, vol.6, No.1, pp.1–18.
 
7.
Musavi S. H., Sepehrikia M., Davoodi B. and Niknam S.A. (2022): Performance analysis of developed micro-textured cutting tool in machining aluminum alloy 7075-T6: assessment of tool wear and surface roughness.–The International Journal of Advanced Manufacturing Technology, vol.119, pp.3343-3362.
 
8.
Azimi A.,Tutunchilar S., Faraji G. and Besharati Givi M.K. (2012): Mechanical properties and microstructural evolution during multi-pass ECAR of Al 1100–O alloy.–Materials and Design, vol.42, pp.388-394.
 
9.
Liu Y., Meng G.Z. and Cheng Y.F. (2009): Electronic structure and pitting behavior of 3003 aluminum alloy passivated under various conditions.– Electrochimica Acta, vol.54, No.17, pp.4155-4163.
 
10.
Fang N., Srinivasa Pai P. and Mosquea S. (2010): The effect of built-up edge on the cutting vibrations in machining 2024-T351 aluminum alloy.– Int. J. Adv. Manuf. Technol., vol.49, No.1-4, pp.63-71.
 
11.
Demir H. andGündüz S. (2009): The effects of aging on machinability of 6061 aluminium alloy.– Materials and Design, vol.30, No.5, pp.1480-1483.
 
12.
Sahoo P., Pratap A. and Bandyopadhyay A. (2017): Modeling and optimization of surface roughness and tool vibration in CNC turning of Aluminum alloy using hybrid RSM-WPCA methodology.– International Journal of Industrial Engineering Computations, vol.8, No.3, pp.385-398.
 
13.
Bouacha K., Yallese M. A., Mabrouki T. and Rigal J.F. (2010): Statistical analysis of surface roughness and cutting forces using response surface methodology in hard turning of AISI 52100 bearing steel with CBN tool.– Int. Journal of Refractory Metals & Hard Materials, vol.28, No.3, pp.349-361.
 
14.
Bouacha K., Yallese M. A., Khamel S. and Belhadi S. (2014): Analysis and optimization of hard turning operation using cubic boron nitride tool.–Int. Journal of Refractory Metals and Hard Materials, vol.45, pp.160-178.
 
15.
Yallese M.A., Boulanouar L. and Chaoui K. (2004): Usinage de l’acier 100Cr6 trempé par un outil en nitrure de bore cubique.– Mechanics &I ndustry, vol.5. No.4, pp.355-368.
 
16.
Das B., Roy S., Rai R.N. andSaha S.C. (2015): Studies on effect of cutting parameters on surface roughness of Al-Cu-TiC MMCs: an artificial neural network approach.–Procedia Computer Science, vol.45, pp.745-752.
 
17.
Palavar O., Özyürek D. and Kalyon A. (2015): Artificial neural network prediction of aging effects on the wear behavior of IN706 superalloy.–Materials & Design, vol.82, pp.164-172.
 
18.
Tebassi H., Yallese M., Khettabi R., Belhadi S., Meddour I. and Girardin F. (2016): Multi-objective optimization of surface roughness, cutting forces, productivity and power consumption when turning of Inconel 718.– International Journal of Industrial Engineering Computations, vol.7, No.1, pp.111-134.
 
19.
Chabbi A., Yallese M. A., Meddour I., Nouioua M., Mabrouki T. and Girardin F. (2017): Predictive modeling and multi-response optimization of technological parameters in turning of Polyoxymethylene polymer (POM C) using RSM and desirability function.– Measurement, vol.95, pp.99-115.
 
20.
Chabbi A., Yallese M.A., Nouioua M., Meddour I., Mabrouki T. and Girardin F. (2017): Modeling and optimization of turning process parameters during the cutting of polymer (POM C) based on RSM, ANN, and DF methods.– The International Journal of Advanced Manufacturing Technology, vol.91, No.5-8, pp.2267-2290.
 
21.
Mobin M., Mousavi S. M., Komaki M. and Tavana M.A. (2018): Hybrid desirability function approach for tuning parameters in evolutionary optimization algorithms.–Measurement, vol.114, pp.417-427.
 
22.
AL-Refaie A., AL-Alaween W., Diabat A. and Li M.-H. (2017): Solving dynamic systems with multi-responses by integrating desirability function and data envelopment analysis.–J. Intell. Manuf, vol.28, No.2, pp.387-403.
 
23.
Kumar N. and Das D. (2016): Alkali treatment on nettle fibers part II: design of experiment and desirability function approach to study enhancement of tensile properties.– The Journal of the Textile Institute, vol.108, No.8, pp.1468-1475.
 
24.
Das R., Ball A.K. and Roy S.S. (2017): Optimization of E-jet based micro-manufacturing process using desirability function analysis.–Industry Interactive Innovations in Science, Engineering and Technology, vol.11, pp.477-484.
 
25.
Tebassi H., Yallese M.A., Meddour I., Girardin F. and Mabrouki T. (2016): On the modeling of surface roughness and cutting force when turning of Inconel 718 using artificial neural network and response surface methodology: accuracy and benefit.– PeriodicaPolytechnica Mechanical Engineering, vol.61, No.1, pp.1-11.
 
26.
Fnides M., Yallese M. A., Khattabi R., Mabrouki T. and Girardin F. (2017): Modeling and optimization of surface roughness and productivity thru RSM in face milling of AISI 1040 steel using coated carbide inserts.– International Journal of Industrial Engineering Computations, vol.8, No.4, pp.493-512.
 
27.
Bouzid L., Berkani S., Yallese M. A., Girardin F. and Mabrouki T. (2018): Estimation and optimization of flank wear and tool lifespan in finish turning of AISI 304 stainless steel using desirability function approach.– International Journal of Industrial Engineering Computations, vol.9, No.3, pp.349-368.
 
28.
Tebassi H., Yallese M., Belhadi S., Girardin F. and Mabrouki T. (2017): Quality-productivity decision making when turning of Inconel 718 aerospace alloy: a response surface methodology approach.–International Journal of Industrial Engineering Computations, vol.8, No.3, pp.347-362.
 
29.
Ben Fathallah B., Saidi R., Dakhli C., Belhadi S. and Yallese M. A. (2019: Mathematical modelling and optimization of surface quality and productivity in turning process of AISI 12L14 free-cutting steel.– International Journal of Industrial Engineering Computations, vol.10, No.4, pp.557-576.
 
30.
Saidi R., Fathallah B. B., Mabrouki T., Belhadi S. and Yallese M. A. (2019): Modeling and optimization of the turning parameters of cobalt alloy (Stellite 6) based on RSM and desirability function.– The International Journal of Advanced Manufacturing Technology, vol.100, No.9-12, pp.2945-2968.
 
31.
Vilches F. J. T., Hurtado L. S., Fernández F.M. and Gamboa C. B. (2017): Analysis of the chip geometry in dry machining of aeronautical aluminum alloys.– Applied Sciences, vol.7, No.2, pp.132.
 
32.
Jomaa W., Mechri O., Levesque J., Songmene V., Bocher P. and Gakwaya A. (2017): Finite element simulation and analysis of serrated chip formation during high–speed machining of AA7075–T651 alloy.–Journal of Manufacturing Processes, vol.26, pp.446-458.
 
33.
Ramezani M. (2015): Surface roughness prediction of particulate composites using artificial neural networks in turning operation.– Decision Science Letters, vol.4, No.3, pp.419-424.
 
34.
Rajendra M., Jena P.C. and Raheman H. (2009): Prediction of optimized pretreatment process parameters for biodiesel production using ANN and GA.–Fuel, vol.88, No.5, pp.868-875.
 
35.
García-Gimeno R.M., Hervas-Martinez C., Rodriguez-Perez R. and Zurera-Cosano G. (2005): Modelling the growth of Leuconostocmesenteroides by artificial neural networks.–International Journal of Food Microbiology, vol.105, No.3, 317-332.
 
36.
Kashyzadeh K.R. and Maleki E. (2017): Experimental investigation and artificial neural network modeling of warm galvanization and hardened chromium coatings thickness effects on fatigue life of AISI 1045 carbon steel.– J. Fail. Anal. Prev., vol.17, No.6, pp.1276-1287.
 
eISSN:2353-9003
ISSN:1734-4492
Journals System - logo
Scroll to top