ORIGINAL PAPER
Design and Characterization of a Novel Knee Articulation Mechanism
,
 
,
 
,
 
 
 
More details
Hide details
1
Wrocław University of Science and Technology, Faculty of Mechanical Engineering, Department of Biomedical Engineering, Mechatronics and Theory of Mechanisms, Łukasiewicza St. 7/9, 50-371 Wrocław. , Poland
 
2
University of Cassino and South Latium, Department of Civil Engineering and Mechanics, LARM: Laboratory of Robotics and Mechatronics, Via G Di Biasio 43, Cassino (FR). Italy
 
 
Online publication date: 2016-09-10
 
 
Publication date: 2016-08-01
 
 
International Journal of Applied Mechanics and Engineering 2016;21(3):611-622
 
KEYWORDS
ABSTRACT
The paper is focused on designing a novel controllable and adjustable mechanism for reproducing human knee joint’s complex motion by taking into account the flexion/extension movement in the sagittal plane, in combination with roll and slide. Main requirements for a knee rehabilitation supporting device are specified by researching the knee’s anatomy and already existing mechanisms. A three degree of freedom (3 DOF) system (four-bar like linkage with controlled variable lengths of rockers) is synthesised to perform the reference path of instantaneous centre of rotation (ICR). Finally, a preliminary design of the adaptive mechanism is elaborated and a numerical model is built in Adams. Numerical results are derived from simulations that are presented to evaluate the accuracy of the reproduced movement and the mechanism’s capabilities.
 
REFERENCES (42)
1.
Varela M., Ceccarelli M. and Flores P. (2015): A kinematic characterization of human walking by using CaTraSys. – Mechanism and Machine Theory, vol.86, pp.125–139.
 
2.
Varela M., Ceccarelli M., Flores P. (2015). A kinematic characterization of human walking by using CaTraSys Mechanism and Machine Theory. 86: 125-139.
 
3.
Ciszkiewicz A. and Knapczyk J. (2014): Parameters estimation for the spherical model of the human knee joint using vector method. – Int. J. of Applied Mechanics and Engineering, vol.19, No.3, pp.523-537. 10.2478/ijame-2014-0035.
 
4.
Ciszkiewicz A., Knapczyk J. (2014). Parameters estimation for the spherical model of the human knee joint using vector method Int. J. of Applied Mechanics and Engineering. 19 (3): 523-537. doi:10.2478/ijame-2014-0035.
 
5.
Lovasz E.C., Pop C., Pop F. and Dolga V. (2014): Novel solution for leg motion with 5-link belt mechanism. – Int. J. of Applied Mechanics and Engineering, vol.19, No.4, pp.699-708. 10.2478/ijame-2014-0048.
 
6.
Lovasz E.C., Pop C., Pop F., Dolga V. (2014). Novel solution for leg motion with 5-link belt mechanism Int. J. of Applied Mechanics and Engineering. 19 (4): 699-708. doi:10.2478/ijame-2014-0048.
 
7.
Liang C., Ceccarelli M. and Takeda Y. (2012): Operation analysis of a Chebyshev-Pantograph leg mechanism for a single DOF biped robot. – Front. Mech. Eng. vol.7, No.4, pp.357–370. 10.1007/s11465-012-0340-5.
 
8.
Liang C., Ceccarelli M., Takeda Y. (2012). Operation analysis of a Chebyshev-Pantograph leg mechanism for a single DOF biped robot Front. Mech. Eng. 7 (4): 357-370. doi:10.1007/s11465-012-0340-5.
 
9.
Tate P. (2012): Seeley’s Principles of Anatomy & Physiology. – Second Edition. ISBN: 0073378194.
 
10.
Tate P. (2012). Seeley’s Principles of Anatomy & Physiology, Second Edition. ISBN: 0073378194.
 
11.
Gerber C. and Matter P. (1983): Biomechanical analysis of the knee after rupture of the cruciate ligament and its primary repair. An instant-centre analysis of function. – The J. of Bone and Joint Surgery, vol.65-B, No.4, pp.391-399.
 
12.
Gerber C., Matter P. (1983). Biomechanical analysis of the knee after rupture of the cruciate ligament and its primary repair. An instant-centre analysis of function The J. of Bone and Joint Surgery. 65-B (4): 391-399.
 
13.
Ogrodzka K., Niedźwiedzki T. and Chwała W. (2011): Evaluation of the kinematic parameters of normal-paced gait in subjects with gonarthrosis and the influence of gonarthrosis on the function of the ankle joint and hip joint. – Acta of Bioengineering and Biomechanics, vol.13, No.3, pp.47-54.
 
14.
Ogrodzka K., Niedźwiedzki T., Chwała W. (2011). Evaluation of the kinematic parameters of normal-paced gait in subjects with gonarthrosis and the influence of gonarthrosis on the function of the ankle joint and hip joint Acta of Bioengineering and Biomechanics. 13 (3): 47-54.
 
15.
Huston R.L. (2008): Principles of Biomechanics. – CRC Press, ISBN: 978-0-8493-3494-8.
 
16.
Huston R.L. (2008). Principles of Biomechanics. CRC Press. ISBN: 978-0-8493-3494-8.
 
17.
Wiczkowski E. and Skiba K. (2008): Kinetic analysis of the human knee joint. – Biology of Sport, vol.25, No.1, pp.77-91.
 
18.
Wiczkowski E., Skiba K. (2008). Kinetic analysis of the human knee joint Biology of Sport. 25 (1): 77-91.
 
19.
Nägerl H., Dathe H., Fiedler CH., Gowers L., Kirsch S., Kubein-Messenburg D., Dumont C. and Wachowski M.M. (2015): The morphology of the articular surfaces of biological knee joints provides essential guidance for the construction of functional knee endoprostheses. – Acta of Bioengineering and Biomechanics, vol.17, No.2, pp.45-53.
 
20.
Nägerl H., Dathe H., Fiedler CH., Gowers L., Kirsch S., Kubein-Messenburg D., Dumont C., Wachowski M.M. (2015). The morphology of the articular surfaces of biological knee joints provides essential guidance for the construction of functional knee endoprostheses Acta of Bioengineering and Biomechanics. 17 (2): 45-53.
 
21.
Kim K.J., Kang M.S., Choi Y., Jang H.Y., Han J. and Han C. (2012): Development of the exoskeleton knee rehabilitation robot using the linear actuator. – International Journal of Precision Engineering and Manufacturing, vol.13, No.10, pp.1889-1895, 10.1007/s12541-012-0248-3.
 
22.
Kim K.J., Kang M.S., Choi Y., Jang H.Y., Han J., Han C. (2012). Development of the exoskeleton knee rehabilitation robot using the linear actuator International Journal of Precision Engineering and Manufacturing. 13 (10): 1889-1895. doi:10.1007/s12541-012-0248-3.
 
23.
Wiest J. (2002): What’s new in Prosthetic Knees? – In Motion, vol.12, No.3.
 
24.
Wiest J. (2002). What’s new in Prosthetic Knees? In Motion. 12 (3).
 
25.
Nägerl H., Frosch K.H., Wachowski M.M., Dumont C., Abicht CH., Adam P. and Kubein-Meesenburg D. (2008): A novel total knee replacement by rolling articulating surfaces. In vivo functional measurements and tests. – Acta of Bioengineering and Biomechanics, vol.10, No.1, pp.55-60.
 
26.
Nägerl H., Frosch K.H., Wachowski M.M., Dumont C., Abicht CH., Adam P., Kubein-Meesenburg D. (2008). A novel total knee replacement by rolling articulating surfaces. In vivo functional measurements and tests Acta of Bioengineering and Biomechanics. 10 (1): 55-60.
 
27.
Lovasz E.C., Modler K.H., Draghici A. and Vacarescu V. (2009): Studies for a new prosthesis design for the work capacity rehabilitation. – Annals Of DAAAM and Proceedings, pp.1549-1550.
 
28.
Lovasz E.C. Modler K.H. Draghici A. Vacarescu V. 2009 Studies for a new prosthesis design for the work capacity rehabilitation Annals Of DAAAM and Proceedings 1549 1550.
 
29.
Gastaldi L., Lisco G. and Pastorelli S. (2015): Evaluation of functional methods for human movement modelling. Acta of Bioengineering and Biomechanics, vol.17, No.4, pp.31-38.
 
30.
Gastaldi L., Lisco G., Pastorelli S. (2015). Evaluation of functional methods for human movement modelling Acta of Bioengineering and Biomechanics. 17 (4): 31-38.
 
31.
Olinski M., Lewandowski B. and Gronowicz A. (2015): Type synthesis and preliminary design of devices supporting lower limb’s rehabilitation. – Acta of Bioengineering and Biomechanics, vol.17, No.1, pp.117-127.
 
32.
Olinski M., Lewandowski B., Gronowicz A. (2015). Type synthesis and preliminary design of devices supporting lower limb’s rehabilitation Acta of Bioengineering and Biomechanics. 17 (1): 117-127.
 
33.
Moser S. (2013): Development of a Variable Knee Joint. – Bachelor-Thesis, ETH, Zurich.
 
34.
Moser S. (2013). Development of a Variable Knee Joint. Bachelor-Thesis,.
 
35.
Walker P.S., Kurosawa H., Rovick J.S. and Zimmerman R.A. (1985): External knee joint design based on normal motion. – J. Rehabil. Res. Dev., vol.22, No.1, pp.9–22.
 
36.
Walker P.S., Kurosawa H., Rovick J.S., Zimmerman R.A. (1985). External knee joint design based on normal motion J. Rehabil. Res. Dev. 22 (1): 9-22.
 
37.
Bertomeu J.M.B., Lois J.M.B., Guillem R.B., Pozo A.P.D., Lacuesta J., Mollà C.G., Luna P.V. and Pastor J.P. (2007): Development of a hinge compatible with the kinematics of the knee joint. – Prosthetics and Orthotics International, vol.31, No.4, pp.371 – 383. http://dx.doi.org/10.1080/0309....
 
38.
Bertomeu J.M.B., Lois J.M.B., Guillem R.B., Pozo A.P.D., Lacuesta J., Mollà C.G., Luna P.V., Pastor J.P. (2007). Development of a hinge compatible with the kinematics of the knee joint Prosthetics and Orthotics International. 31 (4): 371-383.
 
39.
Buśkiewicz J. (2014): A specific problem of mechanism synthesis. – Int. J. of Applied Mechanics and Engineering, vol.19, No.3, pp.513-522. 10.2478/ijame-2014-0034.
 
40.
Buśkiewicz J. (2014). A specific problem of mechanism synthesis Int. J. of Applied Mechanics and Engineering. 19 (3): 513-522. doi:10.2478/ijame-2014-0034.
 
41.
Ciszkiewicz A. and Knapczyk J. (2015): Parameters Estimation for a patellofemoral joint of a human knee using a vector method. – Int. J. of Applied Mechanics and Engineering, vol.20, No.3, pp.629-636.
 
42.
Ciszkiewicz A., Knapczyk J. (2015). Parameters Estimation for a patellofemoral joint of a human knee using a vector method Int. J. of Applied Mechanics and Engineering. 20 (3): 629-636.
 
eISSN:2353-9003
ISSN:1734-4492
Journals System - logo
Scroll to top