ORIGINAL PAPER
Comparative Analysis of Erosion-Corrosion in Stainless Steels: Evaluating AISI 304, AISI 316, and UB6 Across Varied Corrosive Conditions
 
More details
Hide details
1
Material Engineering Laboratory, The National Higher School of Mining of Rabat (ENSMR), Morocco
 
 
Submission date: 2025-02-18
 
 
Final revision date: 2025-05-04
 
 
Acceptance date: 2025-08-13
 
 
Online publication date: 2025-12-05
 
 
Publication date: 2025-12-05
 
 
Corresponding author
Khaoula MESBAH   

Material Engineering Laboratory, The National Higher School of Mining of Rabat (ENSMR), Rabat, Morocco
 
 
International Journal of Applied Mechanics and Engineering 2025;30(4):104-124
 
KEYWORDS
TOPICS
ABSTRACT
This study investigates the erosion-corrosion behavior of stainless steels AISI 304, AISI 316, and UB6 (AISI 904L) under various impact angles and environmental conditions (neutral, saline, and acidic). The research focuses on assessing material resistance, analyzing the influence of impact parameters and environments on degradation, and exploring the synergy between erosion and corrosion. Results show that AISI 304 exhibits the highest degradation, particularly at a 45° impact angle in acidic conditions. AISI 316 demonstrates moderate resistance, with greater sensitivity in saline and acidic media, while UB6 shows better resistance. Experiments were conducted using a custom test bench designed at the Materials Engineering Laboratory. Statistical analysis (ANOVA) of results showed the significant effects of impact angle and environment on mass loss of chosen material for test.
REFERENCES (29)
1.
López D., Congote J.P., Cano J.R., Toro A. and Tschiptschin A.P. (2005): Effect of particle velocity and impact angle on the corrosion-erosion of AISI 304 and AISI 420 stainless steels.– Wear, vol.259, pp.118-124.
 
2.
Ghasemi H.M., Karimi M., Pasha A. and Abedini M. (2011): Erosion-corrosion behavior of 316-ss in seawater simulated environment at various impingement angles.– International Journal of Mechanical and Materials Engineering, vol.6, pp.400-404.
 
3.
Rajahram S.S., Harvey T.J. and Wood R.J.K. (2010): Full factorial investigation on the erosion-corrosion resistance of UNS S31603.– Tribology International, vol.43, pp.2072-2083.
 
4.
Tian Y., Zhao H., Yang R., Liu X., Chen X., Qin J., McDonald A. and Li H. (2022): In-situ SEM investigation on stress-induced microstructure evolution of austenitic stainless steels subjected to cavitation erosion.– Materials & Design, vol.213, p.110314.
 
5.
Chellaganesh D., Adam Khan M., Ebenezer G. and Sivakumar S. (2021): Erosion studies of SS316L using water jet machine for piping applications.– Materials Today: Proceedings, vol.46, pp.7359-7363.
 
6.
El-Midany T.T., Abdel Samad A.A.F., Abdel Moneim A.M.G. and Saleh Y.S.A. (2016): Effect of material type, impact angle and specimen shape on erosion process.– Mansoura Engineering Journal (MEJ), vol.41, No.2, https://doi.org/10.21608/bfemu....
 
7.
Laguna-Camacho R., Marquina-Chávez A., Méndez-Méndez J.V. and Vite-Torres M. (2013): Solid particle erosion of AISI 304, 316 and 420 stainless steels.– Wear, vol.301, pp.254-262.
 
8.
Chung R.J., Jiang J., Pang C., Yu B., Eadie R. and Li D.Y. (2021): Erosion-corrosion behaviour of steels used in slurry pipelines.– Wear, vol.477, p.203771.
 
9.
Iversen B. and Leffler B. (2010): Aqueous corrosion of stainless steels.– Elsevier Reference Module in Chemistry, Molecular Sciences and Chemical Engineering, vol.3, pp.1802-1878.
 
10.
Yao J., Zhou F., Zhao Y., Yin H. and Li N. (2015): Investigation of erosion of stainless steel by two-phase jet impingement.– Applied Thermal Engineering, vol.88, pp.353-362.
 
11.
Wood R.J.K., Walker J.C., Harvey T.J., Wang S. and Rajahram S.S. (2013): Influence of microstructure on the erosion and erosion-corrosion characteristics of 316 stainless steel.– Wear, vol.306, pp.254-262.
 
12.
Ricardo G.A.N. and Sommerfeld M. (2020): Experimental evaluation of surface roughness variation of ductile materials due to solid particle erosion.– Advanced Powder Technology, vol.31, pp.3790-3816.
 
13.
Divakar M., Agarwal V.K. and Singh S.N. (2005): Effect of the Material Surface Hardness on the Erosion of AISI316.– Wear, vol.259, pp.110-117.
 
14.
Malik M., Toor I.H. and Ahmed W.H. (2014): Evaluating the effect of hardness on erosion characteristics of aluminum and steels.– Journal of Materials Engineering and Performance, vol.23, pp.2274-2282.
 
15.
Bassach P., Quintana G., Ferrer I. and Ciurana J. (2011): Studying the relation between corrosion and surface roughness.– AIP Conference Proceedings, vol.1431, pp.319-327.
 
16.
Toloei V., Stoilov V. and Northwood D. (2013): The relationship between surface roughness and corrosion.– ASME International Mechanical Engineering Congress and Exposition, pp.10, https://doi.org/10.1115/IMECE2....
 
17.
Loto R.T. (2017): Study of the corrosion resistance of type 304L and 316 austenitic stainless steels in acid chloride solution.– Oriental Journal of Chemistry, vol.33, pp.1090-1096.
 
18.
Zhang J., Ju P., Wang C. and Yuchao D. (2019): Corrosion behaviour of 316L stainless steel in hot dilute sulphuric acid solution with sulphate and NaCl.– Prot. Met. Phys. Chem. Surf., vol.55, pp.148-156.
 
19.
Karafyllias G., Galloway A. and Humphries E. (2021): Erosion-corrosion assessment in strong acidic conditions for a white cast iron and UNS S31600 stainless steel.– Wear, vol.484-485, p.203665.
 
20.
Tan L., Wang Z. and Ma Y. (2021): Tribocorrosion behavior and degradation mechanism of 316L stainless steel in typical corrosive media.– Acta Metallurgica Sinica, vol.34, pp.813-824.
 
21.
Gudić S., Kvrgić D., Vrsalović L. and Gojić M. (2018): Comparison of the corrosion behavior of AISI 304, AISI 316L, and duplex steel in chloride solution.– Zastita Materijala, vol.59, pp.307-315.
 
22.
Lindgren M., Siljander S., Suihkonen R., Pohjanne P. and Vuorinen J. (2016): Erosion-corrosion resistance of various stainless steel grades in high-temperature sulfuric acid solution.– Wear, vol.364-365, pp.11-21.
 
23.
Li H., Yang X., Yin X., Wang X., Tang J. and Gong J. (2021): Effect of chloride impurity on corrosion kinetics of stainless steels in molten solar salt for CSP application.– Oxidation of Metals, vol.95, pp.311-332.
 
24.
Neshati J., Shirazani T.S.T. (2009): Electrochemical behaviour of stainless steel 304 alloy in erosion-corrosion conditions and synergism effect.– Tribology – Materials, Surfaces & Interfaces, vol.3, No.3, pp.103-109.
 
25.
Andrews N., Giourntas L., Galloway A.M. and Pearson A. (2014): Effect of impact angle on the slurry erosion-corrosion of Stellite 6 and SS316.– Wear, vol.320, pp.143-151, DOI:10.1016/j.wear.2014.08.006.
 
26.
Zhao Y.-L., Tang C.-Y., Yao J., Zeng Z.-H. and Dong S.-G. (2020): Investigation of erosion behavior of 304 stainless steel under solid-liquid jet flow impinging at 30°.– Petroleum Science, vol.17, pp.1135-1150.
 
27.
Wood R.J. (1992): Erosion-corrosion synergism for multi-phase flow line materials.– La Houille Blanche, vol.7, No.8, pp.3-8.
 
28.
Islam A., Farhat Z.N., Ahmed E.M. and Alfantazi A.M. (2013): Erosion enhanced corrosion and corrosion enhanced erosion of API X-70 pipeline steel.– Wear, pp.1-10.
 
29.
Brownlie F., Hodgkiess T., Pearson A. and Galloway A.M. (2021): Erosion corrosion mechanisms of engineering steels in different NaCl concentrations.– Journal of Bio- and Tribo-Corrosion, vol.7, No.80, DOI:10.1007/s40735-021-00519-2.
 
eISSN:2353-9003
ISSN:1734-4492
Journals System - logo
Scroll to top