ORIGINAL PAPER
Analysis of bionic riblet structures' influence on centrifugal pump performance
 
More details
Hide details
1
Department of Mechanical Engineering, MET BKC Institute of Engineering, Nashik, SPPU Pune, INDIA, India
 
2
Department of Mechanical Engineering,, MET BKC Institute of Engineering, Nashik, SPPU Pune, INDIA, India
 
These authors had equal contribution to this work
 
 
Submission date: 2025-02-05
 
 
Final revision date: 2025-03-18
 
 
Acceptance date: 2025-07-30
 
 
Online publication date: 2025-12-05
 
 
Publication date: 2025-12-05
 
 
Corresponding author
Rajendra Jibhau Pawar   

Department of Mechanical Engineering, MET BKC Institute of Engineering, Nashik, SPPU Pune, INDIA, Adgaon, 422003, Nashik, India
 
 
International Journal of Applied Mechanics and Engineering 2025;30(4):125-136
 
KEYWORDS
TOPICS
ABSTRACT
The growing need for energy conservation and sustainability in industrial sectors has led to extensive research on improving mechanical systems, particularly centrifugal pumps. These pumps play a crucial role in hydropower generation, industrial processes, and fluid transportation. This study explores the use of biomimetic riblet structures inspired by shark skin to enhance centrifugal pump performance. Traditional designs focus on either hydraulic efficiency or noise reduction, leaving room for improvement. By developing and experimentally testing a bionic impeller, the research examines its impact on head, power consumption, and efficiency across different flow rates. While biomimetic adaptations are common in aerospace and marine engineering, their potential in pumps remains underexplored. Comparative analysis evaluates the effectiveness of these modifications in optimizing performance. Experimental findings provide insights into improved fluid movement and energy efficiency. By integrating nature-inspired design with testing, this study contributes to the development of high-performance, sustainable pumps. The results may help advance efficient industrial fluid transport systems. This research bridges biomimetic innovation with practical engineering, paving the way for future pump advancements.
REFERENCES (30)
1.
Liu H., Cheng Z., Ge Z., Dong L. and Dai C. (2021): Collaborative improvement of efficiency and noise of bionic vane centrifugal pump based on multi-objective optimization.– Advances in Mechanical Engineering, vol.13, No.2, pp.1-15, DOI: 10.1177/1687814021994976.
 
2.
Euyoqui Aréchiga F.J., Suástegui Macías J.A., Bonilla D., Acuña Ramírez A., Pérez Sánchez A. and Magaña Almaguer H.D. (2024): Evaluation of energy efficiency actions in Mexican aqueducts with an approach on their performance over time.– Heliyon, vol.10, No.e40594, pp.1-17, DOI: 10.1016/j.heliyon. 2024.e40594.
 
3.
Zhang Y. and Song C. (2023): A novel design of centrifugal pump impeller for hydropower station management based on multi-objective inverse optimization.– Processes, vol.11, No.3335, pp.1-20, DOI: 10.3390/pr11123335.
 
4.
Jiang Q., Heng Y., Liu X., Zhang W., Bois G. and Si Q. (2019): A review of design considerations of centrifugal pump capability for handling inlet gas-liquid two-phase flows.– Energies, vol.12, No.1078, pp.1-18, DOI: 10.3390/en12061078.
 
5.
Cao P., Wang Y., Kang C., Li G. and Zhang X. (2017): Investigation of the role of non-uniform suction flow in the performance of water-jet pump.– Ocean Engineering, vol.140, pp.258-269. DOI: 10.1016/j.oceaneng.2017.05.031.
 
6.
Dai C., Guo C., Chen Y., Dong L. and Liu H. (2021): Analysis of the influence of different bionic structures on the noise reduction performance of the centrifugal pump.– Advances in Mechanical Engineering, vol.21, No.3, pp.886-895, DOI: 10.3390/s21030886.
 
7.
Liu J., Zhang F., Zhu L.F., Yuan S.Q., Xu R.H. and Zhang H. (2024): Influence of bionic structure on hydraulic performance and drag reduction effect of a centrifugal pump.– Journal of Physics: Conference Series, vol.2707, No.1, pp.012044-012052, DOI: 10.1088/1742-6596/2707/1/012044.
 
8.
Hijazi S. and Tolouei E. (2024): Bio-inspired surface texture fluid drag reduction using large eddy simulation.– Journal of Applied Fluid Mechanics, vol.16, No.6, pp.1175-1192, DOI: 10.47176/jafm.16.06.1502.
 
9.
Graybill M.T. and Xu N. (2024): Experimental studies of bioinspired shark denticles for drag reduction.– Integrative and Comparative Biology, vol.64, No.3, pp.742-752. DOI: 10.1093/icb/icae086.
 
10.
Mohammadikarachi A., Yousif M., Song J. and Lim, H. (2024): Exploring near-wake structures: Bio-inspired C-D riblets on circular bluff bodies.– Journal of Fluids Engineering, vol.147, No.1, pp.1-11, DOI: 10.1115/1.4066113.
 
11.
Xiao G., Zhang Y., He Y. and He S. (2020): Optimization of belt grinding step over for biomimetic micro-riblets surface on titanium alloy blades.– The International Journal of Advanced Manufacturing Technology, vol.110, No.1, pp.1503-1513, DOI: 10.1007/s00170-020-05935-1.
 
12.
Gabler-Smith M.K. and Lauder G.V. (2022): Ridges and riblets: Shark skin surfaces versus biomimetic models.– Frontiers in Marine Science, vol.9, No.1, pp.1-8, DOI: 10.3389/fmars.2022.975062.
 
13.
Fan S., Han X., Tang Y., Wang Y. and Kong X. (2022): Shark skin–An inspiration for the development of a novel and simple biomimetic turbulent drag reduction topology.– Sustainability, vol.14, No.24, pp.1-20, DOI: 10.3390/su142416662.
 
14.
Ibrahim M.D., Amran S.N.A., Zulkharnain A. and Sunami Y. (2018): Streamlined vessels for speedboats: Macro modifications of shark skin design applications.– AIP Conference Proceedings, vol.1929, No.1, pp.1-6, DOI: 10.1063/1.5021936.
 
15.
Yang K., Yu X., Cui X., Chen D., Shen T., Liu Z., Zhang B., Chen H., Fang R., Dong Z. and Jiang L. (2025): Surface modification of 3D biomimetic shark denticle structures for drag reduction.– Advances in Materials, vol.1, No.1, pp.1-10, DOI: 10.1002/adma.202417337.
 
16.
Dean B. and Bhushan B. (2010): Shark-skin surfaces for fluid-drag reduction in turbulent flow: A review.– Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences, vol.368, No.1929, pp.4775-4806, DOI: 10.1098/rsta.2010.0201.
 
17.
Wang Y., Dong L., Zhou R., Guo C. and Dai C. (2024): Energy loss and noise reduction of centrifugal pump based on bionic V-groove geometry.– Water, vol.16, No.15, pp.2183-2195, DOI: 10.3390/w16152183.
 
18.
Zhang H., Tang L. and Zhao Y. (2020): Influence of blade profiles on plastic centrifugal pump performance.– Advances in Materials Science and Engineering, vol.2020, No.1, pp.1-15, DOI: 10.1155/2020/6665520.
 
19.
Barmaki R. and Ehghaghi M.B. (2019): Experimental investigation of a centrifugal pump hydraulic performance in hydraulic transmission of solids.– Mechanics and Mechanical Engineering, vol.23, No.1, pp.259-270, DOI: 10.2478/mme-2019-0035.
 
20.
Singh K., Singh A. and Singh D.K. (2025): Modelling and optimization of fluid frictional torque in a single-stage centrifugal pump with a vaned diffuser based on RSM, ANN, and desirability function.– Journal of Applied Fluid Mechanics, vol.18, No.3, pp.728-741, DOI: 10.47176/jafm.18.3.2906.
 
21.
Hooshmand R.A. and Joorabian M. (2006): Design and optimisation of electromagnetic flow meter for conductive liquids and its calibration based on neural networks.– IEE Proceedings - Science, Measurement and Technology, vol.153, No.4, pp.139-146, DOI: 10.1049/ip-smt:20050042.
 
22.
Kara Omar A., Khaldi A. and Ladouani A. (2017): Prediction of centrifugal pump performance using energy loss analysis.– Australian Journal of Mechanical Engineering, vol.15, No.3, pp.210-221, DOI: 10.1080/14484846.2016.1252567.
 
23.
White F.M. (2015): Fluid mechanics (8th ed.).– McGraw-Hill Education.
 
24.
Karassik I.J., Messina J.P., Cooper P. and Heald C.C. (2008): Pump handbook (4th ed.).– McGraw-Hill Education.
 
25.
Fox R.W., McDonald A.T. and Pritchard P.J. (2011): Introduction to fluid mechanics (8th ed.).– John Wiley and Sons.
 
26.
Gu X., Su G., Sharma S., Voros J.L., Qin Z. and Buehler M.J. (2016): Three-dimensional printing of bio-inspired composites.– Journal of Biomechanical Engineering, vol.138, No.2, pp.1-16, DOI: 10.1115/1.4032423.
 
27.
Deshmukh P.A., Deshmukh K.D. and Mandhare N.A. (2020): Performance enhancement of centrifugal pump by minimizing casing losses using coating.– SN Applied Sciences, vol.2, No.2, pp.1-10, DOI: 10.1007/s42452-020-2042-7.
 
28.
Wen L., Weaver J.C. and Lauder G.V. (2014): Biomimetic shark skin: Design, fabrication and hydrodynamic function.– The Journal of Experimental Biology, vol.217, No.9, pp.1656-1666, DOI: 10.1242/jeb.097097.
 
29.
Cui B., Wang Z., Zhang Y.-B. and Han X. (2022): Drag and pressure pulsation reduction of a low-specific-speed centrifugal pump by employing bionic structure.– Modern Physics Letters B, vol.36, No.6, pp.1-12, DOI: 10.1142/s0217984921506119.
 
30.
Liu J., Zhang F., Zhu L., Yuan S., Xu R. H. and Zhang H. (2024): Influence of bionic structure on hydraulic performance and drag reduction effect of a centrifugal pump.– Journal of Physics: Conference Series, vol.2707, No.1, pp.1-18, DOI: 10.1088/1742-6596/2707/1/012044.
 
eISSN:2353-9003
ISSN:1734-4492
Journals System - logo
Scroll to top