ORIGINAL PAPER
Plane wave propagation in exponentially graded isotropic non local generalized thermoelastic solid medium under initial stress and gravity
,
 
 
 
More details
Hide details
1
Department of Mathematics, Deenbandhu Chhotu Ram University of Science and Technology, India
 
2
Department of Physical Science (Mathematics), Baba Mastnath University, India
 
These authors had equal contribution to this work
 
 
Submission date: 2025-02-28
 
 
Final revision date: 2025-04-27
 
 
Acceptance date: 2025-09-10
 
 
Online publication date: 2025-12-05
 
 
Publication date: 2025-12-05
 
 
Corresponding author
Krishan Kumar   

Department of Mathematics, Deenbandhu Chhotu Ram University of Science and Technology, Murthal, Sonipat, India
 
 
International Journal of Applied Mechanics and Engineering 2025;30(4):86-103
 
KEYWORDS
TOPICS
ABSTRACT
The work is concerned with the propagation of plane waves at the free half space in a exponentially graded isotropic nonlocal generalized thermoelastic solid medium under initial stress and gravity. We study the incidence of P or SV waves at the free half space. We found three reflected waves namely P, thermal T and SV waves propagating with different speeds. The phase speeds, reflection and energy coefficients are calculated in closed form to study the impact of gravity and initial stress parameter on reflection and energy coefficients. These are calculated numerically and shown graphically with the help of MATLAB. Some special cases of interest are also drawn from the present investigation.
REFERENCES (41)
1.
Biot M.A. (1940): The influence of initial stress on elastic waves.– J. Appl. Phys., vol.11, No.9, pp.522-530, https://doi.org/10.1063/1.1712....
 
2.
Edelen D.G.B. and Laws N. (1971): On the thermodynamics of systems with nonlocality.– Arch. Rational Mech. Anal., vol.43, No.1, pp.24-35. https://doi.org/10.1007/BF0025....
 
3.
Edelen D.G.B., Green A.E. and Laws N. (1971): Nonlocal continuum mechanics.– Arch. Rational Mech. Anal., vol.43, No.1, pp.36-44, https://doi.org/10.1007/BF0025....
 
4.
Eringen A.C. and Edelen D.G.B. (1972): On nonlocal elasticity.– Int. J. Eng. Sci., vol.10, No.3, pp.233-248, https://doi.org/10.1016/0020-7....
 
5.
Altan S.B. (1989): Uniqueness of initial-boundary value problems in nonlocal elasticity.– Int. J. of Solids and Structures, vol.25, No.11, pp.1271-1278, https://doi.org/10.1016/0020-7....
 
6.
Othman M.I. and Song Y. (2007): Reflection of plane waves from an elastic solid half-spaces under hydrostatic initial stress without energy dissipation.– Int. J. Solids Struct., vol.44, No.17, pp.5651-5664, https://doi.org/10.1016/j.ijso....
 
7.
Abd-Alla A.N. and Al-Sheikh F.A. (2009): The effect of the initial stresses on the reflection and transmission of plane quasi-vertical transversewaves in piezoelectric materials.– World Acad. Sci. Eng.Tech., vol.3, No.2, pp.118-125.
 
8.
Abd-Alla A.M., Abo-Dahab S.M. and Al-Thamali T.A. (2012): Propagation of Rayleigh waves in a rotating orthotropic material elastic half-space under initial stress and gravity.– J Mech Sci Tech., vol. 26, pp.2815-2823, https://doi.org/10.1007/s12206....
 
9.
Guo X. and Wei P.(2014): Effects of initial stress on the reflection and transmission waves at the interface between two piezoelectric half-spaces.– Int. J. Solids Struct., vol.51, No.21-22, pp.3735-3751, https://doi.org/10.1016/j.ijso....
 
10.
Othman M.I.A., Abo-Dahab S.M. and Alsebaey O.N.S. (2017): Reflection of plane waves from a rotating magnetothermoelastic medium with two temperature and initial stress under three theories.– Mech. Eng., vol.21, No.2, pp.217-232.
 
11.
Das N., Sarkar N. and Lahiri A. (2019): Reflection of plane waves from the stress-free isothermal and insulated boundaries of a nonlocal thermoelastic solid.– Applied Mathematical Modelling, vol.73, pp.526-542, https://doi.org/10.1016/j.apm.....
 
12.
Tochhawang L. and Singh S.S. (2020): Effect of initial stresses on the elastic waves in transversely isotropic thermoelastic materials.– Wiley, pp.1-14, https://doi.org/10.1002/eng2.1....
 
13.
Poonam, Sahrawat R. K., Kumar K. and Arti (2021): Plane wave propagation in functionally graded isotropic couple stress thermoelastic solid media under initial stress and gravity.– Eur. Phys. J. Plus, vol.136, No.114, https://doi.org/10.1140/epjp/s....
 
14.
Day S., Gupta A.K. and Gupta S. (2002): Effect of gravity and initial stress on torsional surface waves in dry sandy medium.– Journal of Engineering Mechanics, vol.128, No.10, pp.1115-1118, DOI:10.1061/(ASCE)0733-9399(2002)128:10(1116).
 
15.
Biot M.A. (1965): Mechanics of Incremental Deformations.– Wiley, New York.
 
16.
Szekeres A. (1980): Equation system of thermoelasticity using the modified law of thermal conductivity.– Periodica Polytechnica Mech. Eng., vol.24, No.3, pp.253-261.
 
17.
Farkas I. and Szekeres A. (1984): Application of the modified law of heat conduction and state equation to dynamical problems of thermoelasticity.– Periodica Polytechnica Mech. Eng., vol.28, No.2-3, pp.163-170.
 
18.
Chandrasekhariah D.S. (1998): Hyperbolic thermoelasticity: A review of recent literature.– Appl. Mech. Rev., vol.51, No.12, pp.705-729, http://dx.doi.org/10.1115/1.30....
 
19.
Lord H.W. and Shulman Y. (1967): A generalized dynamical theory of thermoelasticity.– J. Mech. Phys. Solid., vol.15,No.5, pp.299-309, http://dx.doi.org/10.1016/0022....
 
20.
Green A.E. and Lindsay A. (1972): Thermoelasticity.– J. Elasticity, vol.2, pp.1-7, https://doi.org/10.1007/BF0004....
 
21.
Hetnarski R.B. and Ignaczak J. (1999): Generalized thermoelasticity.– J. Therm. Stresses, vol.22, No.4-5, pp.451-476, doi:10.1080/014957399280832.
 
22.
Green A.E. and Naghdi P.M. (1993): Thermoelasticity without energy dissipation.– J. Elasticity, vol.31, pp.189-208, https://doi.org/10.1007/BF0004....
 
23.
Tzou D.Y. (1995): A unified approach for heat conduction from macro to micro-scales.– J. Heat Trans., vol.117, No.1, pp.8-16, https://doi.org/10.1115/1.2822....
 
24.
Inan E. and Eringen A.C. (1991): Nonlocal theory of wave propagation in thermoelastic plates.– Int. J. Engng. Sci., vol.29, No.7, pp.831-843, https://doi.org/10.1016/0020-7....
 
25.
Eringen A.C. (2002): Non-Local Continuum Field Theories.– Springer-Verlag, New York, https://doi.org/10.1007/b97697.
 
26.
Khurana A. and Tomar S.K. (2016): Wave propagation in nonlocal microstretch solid.– Applied Mathematical Modelling, vol.40, No.11-12, pp.5858-5875, https://doi.org/10.1016/j.apm.....
 
27.
Kumar R. and Kumar K. (2016): Reflection and transmission at the boundary surface of modified couple stress thermoelastic media.– Int. J. of Applied Mechanics and Engineering, vol.21, No.1, pp.61-81, https://doi.org/10.1515/ijame-....
 
28.
Singh D., Kaur G. and Tomar S.K.,(2017): Waves in nonlocal elastic solid with voids.– Journal of Elasticity, vol.128, pp.85-114, https://doi.org/10.1007/s10659....
 
29.
Kaur G., Singh D. and Tomar S. K. (2018): Rayleigh-type wave in a nonlocal elastic solid with voids.– European Journal of Mechanics-/A Solids, vol.71, pp.134-150, https://doi.org/10.1016/j.euro....
 
30.
Sarkar N. and Tomar S.K. (2019): Plane waves in nonlocal thermoelastic solid with voids.– Journal of Thermal Stresses, vol.42, No.5, pp.580-606, https://doi.org/10.1080/014957....
 
31.
Sahrawat K., Poonam and Kumar K. (2020): Wave propagation in nonlocal couple stress thermoelastic solid.– AIP Conference Proceedings, vol.2253, No.1, pp.20-26, https://doi.org/10.1063/5.0018....
 
32.
Pramanik A.S. and Biswas S. (2020): Surface waves in non-local thermoelastic medium with state space approach.– Journal of Thermal Stress, vol.43, No.6, pp.667-686, https://doi.org/10.1080/014957....
 
33.
Poonam, Sahrawat R.K. and Kumar K. (2021): Plane wave propagation and fundamental solution in non-local couple stress micropolar thermoelastic solid medium with voids.– Waves in Random and Complex Media, vol.34, No.2, pp.879-914, https://doi.org/10.1080/174550....
 
34.
Gupta D., Malik S., Kumar K. and Sharma R.K. (2022): Reflection and transmission in non-local couple stress micropolar thermoelastic media.– Int. J. of Appl. Mech. and Engg., vol.27, No.2, pp.53-76, https://doi.org/10.2478/ijame-....
 
35.
Balta. F and Suhubi E.S. (1977): Theory of nonlocal generalized thermoelasticity.– International Journal of Engineering Science, vol.15, No.9-10, pp.579-588, https://doi.org/10.1016/0020-7....
 
36.
Ali H., Bibi F., Azhar E. and Jamal M. (2023): Analyzing Hall current effects and fractional order nonlocal theory on plane wave reflection in a rotating isotropic medium.– International Journal of Computational Materials Science and Engineering, vol.14, No.2, https://doi.org/10.1142/S20476....
 
37.
Bibi F., Ali H., Azhar E., Jamal M., Ahmed I. and Ragab A.E. (2023): Propagation and reflection of thermoelastic wave in a rotating nonlocal fractional order porous medium under Hall current influence.– Scientific Reports, vol.13, No.17703, https://doi.org/10.1038/s41598....
 
38.
Azhar E., Bibi F., Ali H. and Jamal M. (2024): Influence of Hall current on thermoelastic wave behavior in viscoelastic fractional-order rotating porous solids.– Arabian Journal for Science and Engineering, vol.49, No.12, pp.9947-9965, https://doi.org/10.1007/s13369....
 
39.
Azhar E., Bibi F., Ali H. and Jamal M. (2024): Investigating reflection phenomenon of plane waves in a fractional order thermoelastic rotating medium using nonlocal theory.– Mechanics of Time-Dependent Materials, vol.28, No.3, pp.1375-1393, https://doi.org/10.1007/s11043....
 
40.
Bibi F and Ali H. (2024): Reflection and transmission phenomenon of plane waves at the interface of diffusive viscoelastic porous rotating isotropic medium under hall current and nonlocal thermoelastic porous solid.– The Journal of Strain Analysis for Engineering Design, vol.59, No.7, pp.491-516, https://doi.org/10.1177/030932....
 
41.
Singh B. and Bijarnia R. (2021): Non local effects on propagation of waves in a generalized thermoelastic solid half space.– Structural Engineering and Mechanics, vol.77, No.4, pp.473-479, https://doi.org/10.12989/sem.2....
 
eISSN:2353-9003
ISSN:1734-4492
Journals System - logo
Scroll to top