ORIGINAL PAPER
Sensitivity analysis and uncertainty quantification of stiffness modulus using indirect tensile test
More details
Hide details
1
Laboratory of Material Physics and Subatomic, Faculty of Sciences, Ibn Tofaîl University
2
Laboratory Optics, Materials and Systems Team,, FS, Abdelmalk Essaadi University,, Morocco
3
Mechanics, The national higher school of mining of Rabat (ENSMR)
Submission date: 2024-10-02
Final revision date: 2024-12-15
Acceptance date: 2025-03-20
Online publication date: 2025-06-13
Publication date: 2025-06-13
Corresponding author
Hicham Mezouara
Laboratory of Material Physics and Subatomic, Faculty of Sciences, Ibn Tofaîl University
International Journal of Applied Mechanics and Engineering 2025;30(2):105-123
KEYWORDS
TOPICS
ABSTRACT
The stiffness modulus is a critical element in pavement engineering, as its accurate measurement directly reflects the load-bearing capacity of the pavement section. Many researchers utilize indirect tensile tests in laboratory studies to determine this modulus. The pavement's performance, as well as other properties of the pavement layers, can be directly influenced by this modulus. It also provides insights into the resistance of the asphalt mix to permanent deformation due to repeated loads, a common issue in flexible pavements. The stiffness modulus holds a significant role in pavement and pavement materials-related works and designs. This research aims to address uncertainties in stiffness modulus measurements of asphalt mixtures, which can lead to unreliable results and poor decisions in pavement construction. The paper presents theoretical and experimental findings on the uncertainty and sensitivity analysis in identifying influential parameters in stiffness modulus measurement. Key factors such as experimental setup, interface roughness, sample shape, and plate-sample contact were evaluated for their impact on measurement uncertainty. The study found that test repeatability is the primary contributor to measurement error, accounting for approximately 79.72%, followed by thickness measurement, contributing around 19.75%.
REFERENCES (29)
1.
BIPM, IEC, IFCC, ILAC, ISO, IUPAC, IUPAP, and OIML (2008): Evaluation of measurement data - Guide to the expression of uncertainty in measurement.– Joint Committee for Guides in Metrology, JCGM 100:2008. DOI:
https://doi.org/10.59161/JCGM1....
2.
Saltelli A., Ratto M., Andres T., Campolongo F., Cariboni J., Gatelli D., Saisana M. and Tarantola S. (2008): Global Sensitivity Analysis.– The Primer. John Wiley & Sons, Primer,
https://doi.org/10.1002/978047....
3.
Shalaby A., Liske T. and Kavussi A. (2004): Comparing back-calculated and laboratory resilient moduli of bituminous paving mixtures.– Can. J. Civ. Eng., vol.31, pp.988-996,
https://doi.org/10.1139/l04-06....
4.
Baciu F., Rusu-Casandra A. and Pastramă Ş.-D. (2020): Low strain rate testing of tensile properties of steel.– Materials Today: Proceedings, DAS2019, vol.32, pp.128-132,
https://doi.org/10.1016/j.matp....
5.
Barksdale R.D., Lago Alba J.A., Khosla N.P., Kim R., Lambe P.C. and Rahman M.S. (1997): Laboratory determination of resilient modulus for flexible pavement design.– NCHRP Web-Only Document.
6.
Bell S. (2001): A Beginner’s Guide to Uncertainty of Measurement.– NPL Measurement Good Practice Guide, No.11, Issue 2.
7.
Kostic S., Miljojkovic J., Simunovic G., Vukelic D. and Tadic B. (2022): Uncertainty in the determination of elastic modulus by tensile testing.– Engineering Science and Technology, an International Journal, vol.25, p.100998,
https://doi.org/10.1016/j.jest....
8.
European Standards, EN 12697-26. (2007): Bituminous Mixtures-Test Methods for Hot Mix Asphalt.– Part 26: Stiffness, Brussels: European Standards.
9.
Jurowski K., Kaleta A. and Krępa B. (2018): The uncertainty of a dynamic modulus of elasticity measuring in view of nondestructive tests of concrete compressive strength.– MATEC Web Conf., vol.174, p.02010,
https://doi.org/10.1051/matecc....
10.
Gabauer W. (2000). The determination of uncertainties in tensile testing.– Manual of Codes of Practice for the Determination of Uncertainties in Mechanical Tests on Metallic Materials..
11.
Soy M. and Luş M. (2018): Comparison of A and B type measurement uncertainties in tensile testing of metallic materials at ambient temperature.– International Journal of Natural and Engineering Sciences, vol.12, pp.46-55.
12.
Gillard F., Boardman R., Mavrogordato M., Hollis D., Sinclair I., Pierron F. and Browne M. (2014): The application of digital volume correlation (DVC) to study the microstructural behaviour of trabecular bone during compression.– Journal of the Mechanical Behavior of Biomedical Materials, vol.29, pp.480-499.
https://doi.org/10.1016/j.jmbb....
13.
Wang Z. and Ghanem R. (2021): An extended polynomial chaos expansion for PDF characterization and variation with aleatory and epistemic uncertainties.– Computer Methods in Applied Mechanics and Engineering, vol.382, p.113854,
https://doi.org/10.1016/j.cma.....
14.
National Standards and National Normative Documents (1999): NF P98-141, Hydrocarbon mixtures - Surface courses and binder courses: high modulus asphalt concrete (HMAC) - Definition - Classification - Characteristics - Manufacturing - Implementation.
15.
EN 12697-30 (2012): Bituminous mixtures-Test methods for hot mix asphalt-Part 30: Specimen preparation by impact compactor.– European Committee for Standardization.
16.
EN 12697-35 (2012): Bituminous mixtures-Test methods for hot mix asphalt-Part 35: Specimen preparation by impact compactor.– European Committee for Standardization.
17.
EN 12697-31 (2015): Bituminous mixtures-Test methods for hot mix asphalt-Part 31: Specimen preparation by impact compactor.– European Committee for Standardization.
19.
H. Gercek (2007): Poisson’s ratio values for rocks.– International Journal of Rock Mechanics and Mining Sciences, vol.44, No.1, pp.1-13, doi:
https://doi.org/10.1016/j.ijrm....
20.
Kandil F.A. (2000): Introduction to the evaluation of uncertainty.– Project UNCERT, National Physical Laboratory, UK..
21.
Mezouara H., Dlimi L., Salih A., Afechcar M. and Zniker H. (2021): Evaluation of the measurement uncertainty of the stiffness modulus: test case of indirect tensile on cylindrical specimens.– Int. J. Metrol. Qual. Eng., vol.12, No.8,
https://doi.org/10.1051/ijmqe/....
22.
Moffat R.J. (1988): Describing the uncertainties in experimental results.– Experimental Thermal and Fluid Science, vol.1, No.1, pp.3-17,
https://doi.org/10.1016/0894-1....
23.
Popov V.L. (2010): Coulomb’s Law of Friction.– Contact Mechanics and Friction: Physical Principles and Applications, Heidelberg, Springer, pp.133‑154, doi: 10.1007/978-3-642-10803-7_10.
24.
Simmonds E.G., Adjei K.P., Andersen C.W., Aspheim J.C.H., Battistin C., Bulso N., Christensen H.M., Cretois B., Cubero R., Davidovich I.A., Dickel L, Dunn B., Dunn-Sigouin E., Dyrstad K., Einum S., Giglio D., Gjerløw H., Godefroidt A., González-Gil R., Cognoand S.G. and O’Hara R. B. (2022): Insights into the quantification and reporting of model-related uncertainty across different disciplines.– Iscience, vol.25, No.12,
https://doi.org/10.1016/j.isci....
25.
Coleman H.W. and Steele W.G. (2018): Experimentation, Validation, and Uncertainty Analysis for Engineers.– John Wiley & Sons, DOI:10.1002/9781119417989.
26.
Słowik M. and Bartkowiak M. (2015): Calculation of measurement uncertainty for stiffness modulus of asphalt mixture.– Journal of Civil Engineering and Architecture, vol.9, pp.1325-1333.
27.
ASTM D4123-82 (1995): Standard test method for indirect tension test for resilient modulus of bituminous mixtures.– in Am. Soc. Test. Mater., vol.4, URL
https://www.astm.org/d4123-82r....
28.
Keaveny T.M., Pinilla T.P., Crawford R.P., Kopperdahl D.L. and Lou A. (1997): Systematic and random errors in compression testing of trabecular bone.– Journal of Orthopaedic Research, vol.15, No.1, pp.101-110..
29.
Montero W., Farag R., Diaz V., Ramirez M. and Boada B.L. (2011): Uncertainties associated with strain-measuring systems using resistance strain gauges.– The Journal of Strain Analysis for Engineering Design, vol.46, No.1, pp.1-13..