ORIGINAL PAPER
MHD hyperbolic tangent Casson-Williamson nanofluid over a linearly stretching sheet with thermophoresis and brownian motion
 
More details
Hide details
1
Department of Mathematics,, Sreenidhi Institute of Science and Technology
 
2
Department of Science and Humanities, Anurag University
 
3
Department of Humanities and Science, CVR College of Engineering
 
4
Mathematics, Université de Caen-Normandie, France
 
 
Submission date: 2024-08-05
 
 
Final revision date: 2024-12-04
 
 
Acceptance date: 2025-02-07
 
 
Online publication date: 2025-06-13
 
 
Publication date: 2025-06-13
 
 
Corresponding author
Christophe Chesneau   

Mathematics, Université de Caen-Normandie, France
 
 
International Journal of Applied Mechanics and Engineering 2025;30(2):124-139
 
KEYWORDS
TOPICS
ABSTRACT
The main aim of this research is to investigate the effects of Brownian motion and Thermophoresis on an MHD hyperbolic tangent Williamson-Casson nanofluid passing over a stretching sheet. Through appropriate similarity transformations, non-linear partial differential equations governing the model can give rise to non-linear ordinary differential equations. These equations are solved numerically using the Keller-Box method. The quantities related to engineering aspects, such as skin friction, Sherwood number, heat exchange and the various effects of quantifiers on momentum, temperature, and concentration are illustrated with examples for better understanding. For the sake of accuracy, the computational resolution of this research is limited to the published data and is derived from the Keller-Box approach. Heat exchangers, chemical reactors, and thermal management systems are just some of the technological applications for which the study's conclusions may have broad implications. Skin friction increases with Casson and Williamson parameters. For both the fluids, mass transfer is accelerated with Brownian effect while heat transfer decelerates with Thermophoresis effect. The combination of Casson-Williamson characteristics, hyperbolic tangent fluid dynamics and MHD provides a novel way of understanding non-Newtonian fluids in the presence of magnetic fields.
REFERENCES (51)
1.
Crane L.J. (1970): Flow past a stretching plate.– Z. für Angew. Math. Phys., ZAMP, vol.21, pp.645-647, https://doi.org/10.1007/BF0158....
 
2.
Cortell R. (2005): A note on magnetohydrodynamic flow of a power-law fluid over a stretching sheet.– Appl. Math. Comput., vol.168, 557-566, https://doi.org/10.1016/j.amc.....
 
3.
Ahmed J., Shahzad A., Khan M. and Ali R. (2015): A note on convective heat transfer of an MHD Jeffrey fluid over a stretching sheet.– AIP Adv., vol.5, No.11, p.117117. https://doi.org/10.1063/1.4935....
 
4.
Anwar I., Qasim A.R., Ismail Z., Salleh M.Z. and Shafie S. (2013). Chemical reaction and uniform heat generation or absorption effects on MHD stagnation-point flow of a nanofluid over a porous sheet.– World Applied Sciences Journal vol.24, No.10, pp.1390-1398, DOI:10.5829/idosi.wasj.2013.24.10.1307.
 
5.
Noorzadeh S., Moghanlou F.S., Vajdi M. and Ataei M. (2020). Thermal conductivity, viscosity and heat transfer process in nanofluids: a critical review.– J. Compos. Compd., vol.2, No.5, pp.175-192. https://doi.org/10.29252/jcc.2....
 
6.
Naikoti K. and Shashidar Reddy B. (2013): MHD effects on non-Newtonian power-law fluid past a continuously moving porous flat plate with heat flux and viscous dissipation.– International Journal of Applied Mechanics and Engineering, vol.18, No.2, pp.425-446.
 
7.
Saritha K., Rajasekhar M.N. and Shashidar Reddy B. (2015): Quasi-linearization approach to effects of heat source/sink on MHD flow of non-Newtonian power-law fluid past a continuously moving porous flat plate with heat flux and viscous dissipation.– International Journal of Applied Science and Engineering Research, vol.4, pp.36-56.
 
8.
Asogwa K.K. and Ibe A.A. (2020): A study of MHD Casson fluid flow over a permeable stretching sheet with heat and mass transfer.– J. Eng. Res. Rep., vol.16, No.2, pp.10-25, https://doi.org/10.9734/jerr/2....
 
9.
Khan W.A. and Pop I. (2010): Boundary-layer flow of a nanofluid past a stretching sheet.– Int. J. Heat Mass Transf., vol.53, pp.2477-2483, https://doi.org/10.1016/j.ijhe....
 
10.
Kuznetsov A.V. and Nield D.A. (2010): Natural convective boundary-layer flow of a nanofluid past a vertical plate. Int. J. Therm. Sci., vol.49, pp.243-247, https://doi.org/10.1016/j.ijth....
 
11.
Mabood F., Khan W.A. and Ismail A.I.M. (2015): MHD boundary layer flow and heat transfer of nanofluids over a nonlinear stretching sheet: a numerical study.– J. Magn. Magn. Mater., vol.374, pp.569-576, https://doi.org/10.1016/j.jmmm....
 
12.
Akolade M., Adeosun T. and Olabode J. (2020): Influence of thermophysical features on MHD squeezed flow of ‎dissipative Casson fluid with chemical and radiative effects.– J. Appl. Comput. Mech., vol.7, No.4, pp.1999-2009, https://doi.org/10.22055/jacm.....
 
13.
Sheikholeslami M., Hayat T. and Alsaedi A. (2016): MHD free convection of Al2O3-water nanofluid considering thermal radiation: A numerical study.– Int. J. Heat Mass Transf., vol.96, pp.513-524. https://doi.org/10.1016/j.ijhe....
 
14.
Siti Khuzaimah S., Seripah Awang K., Ahmad Haziq Mad S., Nur Zulaikha I. and Siti Nur Saiyidah Ab.H. (2012): Hydromagnetic boundary layer flow over stretching surface with thermal radiation.– World Applied Sciences Journal vol.17, pp.33-38.
 
15.
Hayat T., Bashir G., Waqas M. and Alsaedi A. (2016): MHD 2D flow of Williamson nanofluid over a nonlinear variable thicked surface with melting heat transfer.– Journal of Molecular Liquids, vol.223, pp.836-844, https://doi.org/10.1016/j.moll....
 
16.
Khan M., Malik M.Y., Salahuddin T., Rehman K.U., Naseer M. and Khan I. (2017): MHD flow of Williamson nanofluid over a cone and plate with chemically reactive species.– J. Mol. Liq. vol.231, pp.580-588, https://doi.org/10.1016/j.moll....
 
17.
Malik M.Y., Salahuddin T., Hussain A. and Bilal S. (2015): MHD flow of tangent hyperbolic fluid over a stretching cylinder: using Keller Box method.– J. Magn. Magn. Mater., vol.395, pp.271-276, https://doi.org/10.1016/j.jmmm....
 
18.
Akbar N.S., Nadeem S., Haq R.U. and Khan Z.H. (2013): Numerical solutions of magnetohydrodynamic boundary layer flow of tangent hyperbolic fluid towards a stretching sheet.– Indian J. Phys., vol.87, pp.1121-1124, https://doi.org/10.1007/s12648....
 
19.
Idowu A.S., Akolade M.T., Abubakar J.U. and Falodun B.O. (2020): MHD free convective heat and mass transfer flow of dissipative Casson fluid with variable viscosity and thermal conductivity effects.– J. Taibah Univ. Sci., vol.14, pp.851-862, https://doi.org/10.1080/165836....
 
20.
Gbadeyan J.A., Titiloye E.O. and Adeosun A.T. (2020). Effect of variable thermal conductivity and viscosity on Casson nanofluid flow with convective heating and velocity slip.– Heliyon, vol.6, e03076, https://doi.org/10.1016/j.heli....
 
21.
Asogwa K.K., Goud B.S., Redd Y.D. and Ibe A.A. (2022): Suction effect on the dynamics of EMHD Casson nanofluid over an induced stagnation point flow of stretchable electromagnetic plate with radiation and chemical reaction.– Results Eng., vol.15, p.100518. https://doi.org/10.1016/j.rine....
 
22.
Ghadikolaei S.S., Hosseinzadeh Kh., Ganji D.D. and Jafari B. (2018): Nonlinear thermal radiation effect on magneto Casson nanofluid flow with Joule heating effect over an inclined porous stretching sheet.– Case Stud. Therm. Eng., vol.12, pp.176-187, https://doi.org/10.1016/j.csit....
 
23.
Haq R., Nadeem S., Khan Z. and Okedayo T. (2014): Convective heat transfer and MHD effects on Casson nanofluid flow over a shrinking sheet.– Open Phys., vol.12, https://doi.org/10.2478/s11534....
 
24.
Shashidar Reddy B., Saritha K., and Venkata Madhu J. (2020): Impact of chemical reaction on mass transfer and melting heat transfer of porous MHD Casson fluid flow.– Journal of Mathematical and Computational Science, vol.11, No.1, pp.149-164.
 
25.
Mabood F., Khan W.A. and Ismail A.I.Md. (2015): MHD stagnation point flow and heat transfer impinging on stretching sheet with chemical reaction and transpiration.– Chem. Eng. J., vol.273, pp.430-437, https://doi.org/10.1016/j.cej.....
 
26.
Hayat T., Bilal Ashraf M., Shehzad S. and Alsaedi A. (2015): Mixed convection flow of Casson nanofluid over a stretching sheet with convectively heated chemical reaction and heat source/sink.– J. Appl. Fluid Mech., vol.8, pp.803-813, https://doi.org/10.18869/acadp....
 
27.
Khan M., Hussain A., Malik M.Y. Salahuddin T. and Khan F. (2017): Boundary layer flow of MHD tangent hyperbolic nanofluid over a stretching sheet: a numerical investigation.– Results Phys., vol.7, pp.2837-2844, https://doi.org/10.1016/j.rinp....
 
28.
Reddy C.S., Naikoti K. and Rashidi M.M. (2017): MHD flow and heat transfer characteristics of Williamson nanofluid over a stretching sheet with variable thickness and variable thermal conductivity.– Trans. Razmadze Math. Inst., vol.171, pp.195-211, https://doi.org/10.1016/j.trmi....
 
29.
Nadeem S. and Hussain S.T. (2014): Heat transfer analysis of Williamson fluid over exponentially stretching surface.– Appl. Math. Mech., vol.35,pp.489-502, https://doi.org/10.1007/s10483....
 
30.
Li Y.-X., Alshbool M.H., Lv Y.-P., Khan I., Riaz Khan M. and Issakhov A. (2021): Heat and mass transfer in MHD Williamson nanofluid flow over an exponentially porous stretching surface.– Case Stud. Therm. Eng., vol.26, p.100975, https://doi.org/10.1016/j.csit....
 
31.
Muzara H. and Shateyi S. (2023): Magnetohydrodynamics Williamson nanofluid flow over an exponentially stretching surface with a chemical reaction and thermal radiation.– Mathematics, vol.11, p.2740, https://doi.org/10.3390/math11....
 
32.
Zhu A., Ali H., Ishaq M., Junaid M.S., Raza J. and Amjad M. (2022): Numerical study of heat and mass transfer for williamson nanofluid over stretching/shrinking sheet along with brownian and thermophoresis effects.– Energies, vol.15, p.5926, https://doi.org/10.3390/en1516....
 
33.
Humane P.P., Patil V.S. and Patil A.B. (2021): Chemical reaction and thermal radiation effects on magnetohydrodynamics flow of Casson-Williamson nanofluid over a porous stretching surface.– Proc. Inst. Mech. Eng., Part E, J. Process Mech. Eng., vol.235, pp.2008-2018, https://doi.org/10.1177/095440....
 
34.
Rajeswari P.M. and De P. (2024): Shape factor and sensitivity analysis on stagnation point of bioconvective tetra-hybrid nanofluid over porous stretched vertical cylinder.– BioNanoSci., vol.14, pp.3035-3058, https://doi.org/10.1007/s12668....
 
35.
Pattnaik P.K., Mishra S.R., Baithalu R. and Panda S. (2024): Sensitivity analysis and enhanced EMHD performance of unsteady ferrite-water hybrid nanofluid on a Riga plate with variable magnetization and heat generation.– Numerical Heat Transfer, Part A: Applications, pp.1-23, https://doi.org/10.1080/104077....
 
36.
Mishra S.R., Pattnaik P.K., Bhatti M.M. and Abbas T. (2017): Analysis of heat and mass transfer with MHD and chemical reaction effects on viscoelastic fluid over a stretching sheet.– Indian J. Phys., vol.91, pp.1219-1227, https://doi.org/10.1007/s12648....
 
37.
Bartwal P., Upreti H. and Pandey A.K. (2024): Insight into the impact of melting heat transfer and MHD on stagnation point flow of tangent hyperbolic fluid over a porous rotating disk.– Journal of Porous Medium, vol.27, No.9, pp.73-100, DOI: 10.1615/JPorMedia.2024051926.
 
38.
Bartwal P., Upreti H. and Pandey A.K. (2024): Exploring the features of Von-Karman flow of tangent hyperbolic fluid over a radially stretching disk subject to heating due to porous media and viscous heating.– Modern Physics Letters B, vol.38, No.18, p.2450135, https://doi.org/10.1142/S02179....
 
39.
Puchakayala S.R., Borra S.R., Kallu S., Formanova S., Iyaz Khan M., Waqas M., Ahmad F., and Gupta M. (2024): Comparative numerical study featuring magnetized nanofluids configured by elongating sheet with thermophoresis and Brownian motion.– Partial Differential Equations in Applied Mathematics, p.100915, https://doi.org/10.1016/j.padi....
 
40.
Pattnaik P.C., Mishra S.R. and Pattanik P.K. (2022): Impact of radiative and dissipative heat on the Williamson nanofluid flow within a parallel channel due to thermal buoyancy.– Proceedings of the Institution of Mechanical Engineers, Part N: Journal of Nanomaterials, Nanoengineering and Nanosystems, vol.236, No.1-2, pp.3-18, https://doi.org/10.1177/239779....
 
41.
Shanker Goud B., Dharmendar Reddy Y. and Mishra S.R. (2023): Joule heating and thermal radiation impact on MHD boundary layer Nanofluid flow along an exponentially stretching surface with thermal stratified medium.– Proceedings of the Institution of Mechanical Engineers, Part N: Journal of Nanomaterials, Nanoengineering and Nanosystems, vol.237, No.3-4, pp.107-119, https://doi.org/10.1177/239779....
 
42.
Thirupathi T., Mishra S.R., Ali Abbas M., Bhatti M.M. and Abdelsalam A.I. (2022): Three-dimensional nanofluid stirring with non-uniform heat source/sink through an elongated sheet.– Applied Mathematics and Computation, vol.421, p.126927, https://doi.org/10.1016/j.amc.....
 
43.
Mishra A.K., Pattnaik P.K., Mishra S.R. and Senapati N. (2021): Dissipative heat energy on Cu and Al2O3 ethylene-glycol-based nanofluid flow over a heated semi-infinite vertical plate.– Journal of Thermal Analysis and Calorimetry, vol.145, No.1, pp.129-137, https://doi.org/10.1007/s10973....
 
44.
Yousef N.S., Megahed A.M., Ghoneim N.I., Elsafi M. and Fares E. (2022): Chemical reaction impact on MHD dissipative Casson-Williamson nanofluid flow over a slippery stretching sheet through porous medium.– Alex. Eng. J., vol.61, pp.10161-10170, https://doi.org/10.1016/j.aej.....
 
45.
Baag S., Panda S., Pattnai, P.K. and Mishra S.R. (2023): Free convection of conducting nanofluid past an expanding surface with heat source with convective heating boundary conditions. International Journal of Ambient Energy, vol.44, No.1, pp.880-891, https://doi.org/10.1080/014307....
 
46.
Pattnaik P.K., Mishra S.R., Panda S., Syed S.A. and Muduli K. (2022): Hybrid methodology for the computational behaviour of thermal radiation and chemical reaction on viscoelastic nanofluid flow.– Mathematical Problems in Engineering, Article ID 2227811, https://doi.org/10.1155/2022/2....
 
47.
Panda S., Surender O., Mishra S.R. and Pattnaik P.K. (2023): Response surface methodology and sensitive analysis for optimizing heat transfer rate on the 3D hybrid nanofluid flow through permeable stretching surface.– Journal of Thermal Analysis and Calorimetry, vol.148, No.14, pp.7369-7382, https://doi.org/10.1007/s10973....
 
48.
Seema T., Mishra S.R. and Sharma R.P. (2022): Simulation of time-dependent radiative heat motion over a stretching/shrinking sheet of hybrid nanofluid: stability analysis for dual solutions.– Proceedings of the Institution of Mechanical Engineers, Part N: Journal of Nanomaterials, Nanoengineering and Nanosystems, vol.236, No.1-2, pp.19-30, https://doi.org/10.1177/239779....
 
49.
Anwar M.I., Shafie S., Hayat T., Shehzad S.A. and Salleh M.Z. (2017): Numerical study for MHD stagnation-point flow of a micropolarnanofluid towards a stretching sheet.– J. Braz. Soc. Mech. Sci. Eng., vol.39, pp.89-100, https://doi.org/10.1007/s40430....
 
50.
Gomathi N. and De P. (2024): Entropy optimization on EMHD Casson Williamson penta-hybrid nanofluid over porous exponentially vertical cone.– Alexandria Engineering Journal, vol.108, pp.590-610, https://doi.org/10.1016/j.aej.....
 
51.
Singh K., Pandey A.K. and Kumar M. (2021): Numerical solution of micropolar fluid flow via stretchable surface with chemical reaction and melting heat transfer using Keller-Box method.– Propulsion and Power Research, vol.10, No.2, pp.194-207, https://doi.org/10.1016/j.jppr....
 
eISSN:2353-9003
ISSN:1734-4492
Journals System - logo
Scroll to top