ORIGINAL PAPER
Prediction of degradation in 90° elbow joints of ba35 brass used in potable water pipes through computational fluid dynamics (CFD) simulation
More details
Hide details
1
Department of Materials Engineering, The national higher school of mining of Rabat (ENSMR)
2
Laboratory of Material Physics and Subatomic, Faculty of Sciences, Ibn Tofail University, BP 133
3
Industrial process engineering, The National Higher School of Mining of Rabat (ENSMR), BP: 753 Agdal-Rabat, Morocco.
Submission date: 2025-01-07
Final revision date: 2025-02-13
Acceptance date: 2025-04-07
Online publication date: 2025-06-13
Publication date: 2025-06-13
Corresponding author
Houcine Zniker
Department of Materials Engineering, The national higher school of mining of Rabat (ENSMR)
International Journal of Applied Mechanics and Engineering 2025;30(2):46-61
KEYWORDS
TOPICS
ABSTRACT
Failure of 90° elbows in water pipes due to corrosion is a critical issue in water supply and distribution systems. Therefore, understanding the behavior of pipelines under corrosion is essential to increase their durability. This original study aims to specifically analyze the failure of 90° elbows due to the erosion-corrosion phenomenon. The behavior of water flow, in terms of velocity profile, pressure gradient, and turbulence zones at these elbows, is numerically simulated using the computational fluid dynamics (CFD) method. The simulations, performed with FLUENT software, identify the areas most susceptible to erosion and corrosion, thus contributing to a better understanding of processes such as stress corrosion cracking and cavitation. This work also highlights the importance of designing elbows with suitable characteristics and adopting adequate maintenance practices to prevent failures. These results can serve as a basis for future experimental validations and for the design of more robust pipeline systems.
REFERENCES (30)
1.
Aguirre J., Walczak M. and Rohwerder M. (2019): The mechanism of erosion-corrosion of API X65 steel under turbulent slurry flow: Effect of nominal flow velocity and oxygen content.– Wear, vol.438, p.203053,
https://doi.org/10.1016/j.wear....
2.
Wang Z. and Zheng Y. (2021): Critical flow velocity phenomenon in erosion-corrosion of pipelines: Determination methods, mechanisms and applications.– Journal of Pipeline Science and Engineering, vol.1, No.1, pp.63-73,
https://doi.org/10.1016/j.jpse....
3.
Ayyagari A., Hasannaeimi V., Grewal H.S., Arora H. and Mukherjee S. (2018): Corrosion, erosion and wear behavior of complex concentrated alloys: A review.– Metals, vol.8, No.8, p.603,
https://doi.org/10.3390/met808....
4.
Khan R., Wieczorowski M., Seikh A.H. and Alnaser I.A. (2024): Experimental and numerical study of erosive wear of t-pipes in multiphase flow.– Engineering Science and Technology, an International Journal, vol.52, p.101683,
https://doi.org/10.1016/j.jest....
5.
Shrestha R., Gurung P., Chitrakar S., Thapa B., Neopane H. P. Guo Z. and Qian Z. (2024): Review on experimental investigation of sediment erosion in hydraulic turbines.– Frontiers in Mechanical Engineering, vol.10, p.1526120,
https://doi.org/10.3389/fmech.....
6.
Elemuren R., Tamsaki A., Evitts R., Oguocha I.N., Kennell G., Gerspacher R. and Odeshi A. (2019): Erosion-corrosion of 90 AISI 1018 steel elbows in potash slurry: Effect of particle concentration on surface roughness.– Wear, vol.410, pp.149-155,
https://doi.org/10.1016/j.wear....
7.
Zeng L., Zhang G. and Guo X. (2014): Erosion-corrosion at different locations of X65 carbon steel elbow.– Corrosion Science, vol.85, pp.318-330,
https://doi.org/10.1016/j.cors....
8.
Owen J., Ducker E., Huggan M., Ramsey C., Neville A. and Barker R. (2019): Design of an elbow for integrated gravimetric, electrochemical and acoustic emission measurements in erosion-corrosion pipe flow environments.– Wear, vol.428, pp.76-84,
https://doi.org/10.1016/j.wear....
9.
Kesana N., Grubb S., Mclaury B. and Shirazi S. (2013): Ultrasonic measurement of multiphase flow erosion patterns in a standard elbow.– Journal of Energy Resources Technology, vol.135, No.3, p.032905,
https://doi.org/10.1115/1.4023....
10.
Vieira R.E., Parsi M., Zahedi P., Mclaury B.S. and Shirazi S.A. (2017): Sand erosion measurements under multiphase annular flow conditions in a horizontal-horizontal elbow.– Powder Technology, vol.320, pp.625-636,
https://doi.org/10.1016/j.powt....
11.
Parsi M., Kara M., Agrawal M., Kesana N., Jatale A., Sharma P. and Shirazi S. (2017): CFD simulation of sand particle erosion under multiphase flow conditions.– Wear, vol.376, pp.1176-1184,
https://doi.org/10.1016/j.wear....
12.
Parsi M., Najmi K., Najafifard F., Hassani S., McLaury B.S. and Shirazi S.A. (2014): A comprehensive review of solid particle erosion modeling for oil and gas wells and pipelines applications.– Journal of Natural Gas Science and Engineering, vol.21, pp.850-873,
https://doi.org/10.1016/j.jngs....
13.
Kang R. and Liu H. (2020): An integrated model of predicting sand erosion in elbows for multiphase flows.– Powder Technology, vol.366, pp.508-519,
https://doi.org/10.1016/j.powt....
14.
Farokhipour A., Mansoori Z., Saffar-Avval M. and Ahmadi G. (2020): 3D computational modeling of sand erosion in gas-liquid-particle multiphase annular flows in bends.– Wear, vol.450, p. 203241,
https://doi.org/10.1016/j.wear....
15.
Zhu H., Lin Y., Zeng D., Zhou Y., Xie J. and Wu Y. (2012): Numerical analysis of flow erosion on drill pipe in gas drilling.– Engineering Failure Analysis, vol.22, pp.83-89,
https://doi.org/10.1016/j.engf....
16.
Yang X., Xi T., Qin Y., Zhang H. and Wang, Y. (2024): Computational fluid dynamics-discrete phase method simulations in process engineering: a review of recent progress.– Applied Sciences, vol.14, No.9, p.3856,
https://doi.org/10.3390/app140....
17.
Haider R., Li X., Shi W., Lin Z., Xiao Q. and Zhao H. (2024): Review of computational fluid dynamics in the design of floating offshore wind turbines.– Energies, vol.17, No.17, p.4269,
https://doi.org/10.3390/en1717....
18.
Alghurabi A., Mohyaldinn M., Jufar S., Younis O., Abduljabbar A. and Azuwan M. (2021): CFD numerical simulation of standalone sand screen erosion due to gas-sand flow.– Journal of Natural Gas Science and Engineering, vol.85, p.103706,
https://doi.org/10.1016/j.jngs....
19.
Barile C., Casavola C. and De Cillis F. (2018): Mechanical comparison of new composite materials for aerospace applications.– Composites Part B: Engineering, vol.162, pp.122-128,
https://doi.org/10.1016/j.comp....
20.
Duarte C.A.R. and de Souza F.J. (2017): Innovative pipe wall design to mitigate elbow erosion: A CFD analysis.– Wear, vol.380, pp.176-190,
https://doi.org/10.1016/j.wear....
21.
Peng W., Cao X., Hou J., Ma L., Wang P. and Miao Y. (2021): Numerical prediction of solid particle erosion under upward multiphase annular flow in vertical pipe bends.– International Journal of Pressure Vessels and Piping, vol.192, p.104427,
https://doi.org/10.1016/j.ijpv....
22.
Ejeh C.J., Boah E.A., Akhabue G.P., Onyekperem C.C., Anachuna J.I. and Agyebi I. (2020): Computational fluid dynamic analysis for investigating the influence of pipe curvature on erosion rate prediction during crude oil production.– Experimental and Computational Multiphase Flow, vol.2, No.4, pp.255-272,
https://doi.org/10.1007/s42757....
23.
Lain S. and Sommerfeld M. (2019): Numerical prediction of particle erosion of pipe bends.– Advanced Powder Technology, vol.30, No.2, pp.366-383,
https://doi.org/10.1016/j.apt.....
24.
Ogunsesan O.A., Hossain M., Iyi D. and Dhroubi M.G. (2019): CFD modelling of pipe erosion due to sand transport.– In Proceedings of the 1st International Conference on Numerical Modelling in Engineering, vol.2, Ghent University, Springer, pp.274-289,
https://doi.org/10.1007/978-98....
25.
Peng S., Chen Q., Shan C. and Wang D. (2019): Numerical analysis of particle erosion in the rectifying plate system during shale gas extraction.– Energy Science & Engineering, vol.7, No.5, pp.1838-1851,
https://doi.org/10.1002/ese3.3....
26.
Wang W., Sun Y., Wang B., Dong M. and Chen Y. (2022): Influence of sand fines transport velocity on erosion-corrosion phenomena of carbon steel 90-degree elbow.– Metals, vol.10, No.5, p.626,
https://doi.org/10.3390/met100....
27.
Wang W., Sun Y., Wang B., Dong M. and Chen Y. (2022): CFD-based erosion and corrosion modeling of a pipeline with CO2-containing gas-water two-phase flow.– Energies, vol.15, No.5, p.1694,
https://doi.org/10.3390/en1505....
28.
Abuhatira A.A., Salim S.M. and Vorstius J.B. (2023): CFD-FEA based model to predict leak-points in a 90-degree pipe elbow.– Engineering with Computers, vol.39, No.6, pp.3941-3954,
https://doi.org/10.1007/s00366....
29.
Hong B., Li X., Li Y., Yu Y., Wang Y., Gong J. and Ai D. (2021): Numerical simulation of elbow erosion in shale gas fields under gas-solid two-phase flow.– Energies, vol.14, No.13, p.3804,
https://doi.org/10.3390/en1413....
30.
Edwards J.K., McLaury B.S. and Shirazi S.A. (2001): Modeling solid particle erosion in elbows and plugged tees.– Journal of Energy Resources Technology, vol.123, No.4, pp.277-284,
https://doi.org/10.1115/1.1413....