ORIGINAL PAPER
Flow and Heat Transfer at a Nonlinearly Shrinking Porous Sheet:The Case of Asymptotically Large Powerlaw Shrinking Rates
,

,

More details
Hide details
1
Department of Mathematics, Bangalore University Bangalore 560001, INDIA

2
Department of Mathematics University of Central Florida Orlando, Florida 32816, USA

3
Faculty of Mathematics, University of Cluj R-3400 Cluj, CP 253, ROMANIA

Online publication date: 2013-09-06

Publication date: 2013-08-01

International Journal of Applied Mechanics and Engineering 2013;18(3):779–791

KEYWORDS
ABSTRACT
The boundary layer flow and heat transfer of a viscous fluid over a nonlinear permeable shrinking sheet in a thermally stratified environment is considered. The sheet is assumed to shrink in its own plane with an arbitrary power-law velocity proportional to the distance from the stagnation point. The governing differential equations are first transformed into ordinary differential equations by introducing a new similarity transformation. This is different from the transform commonly used in the literature in that it permits numerical solutions even for asymptotically large values of the power-law index, m. The coupled non-linear boundary value problem is solved numerically by an implicit finite difference scheme known as the Keller- Box method. Numerical computations are performed for a wide variety of power-law parameters (1 < m < 100,000) so as to capture the effects of the thermally stratified environment on the velocity and temperature fields. The numerical solutions are presented through a number of graphs and tables. Numerical results for the skin-friction coefficient and the Nusselt number are tabulated for various values of the pertinent parameters.

REFERENCES (39)
1.
Akyildiz F.T., Siginer D.A., Vajravelu K., Cannon J.R. and Van Gorder R.A. (2010): Similarity solutions of the boundary layer equation for a nonlinearly stretching sheet. - Mathematical Methods in the Applied Sciences, vol.33, pp.601-606.

2.
Ali M.E. (1994): Heat transfer characteristics of a continuous stretching surface. - Heat Mass Transfer, vol.29, pp.227-234.

3.
Altan T., Oh S. and Gegel H. (1979): Metal forming and applications. Metals park. - American Society of Metals.

4.
Aman F. and Ishak A. (2010): Boundary layer flow and heat transfer over a permeable shrinking sheet with partial slip. - J. Appl. Sciences Research, vol.6, pp.1111-1115.

5.
Cebeci T. and Bradshaw P. (1984): Physical and Computational Aspects of Convective Heat Transfer. - New York: Springer-Verlag.

6.
Chen C.K. and. Char M.I. (1988): Heat transfer of a continuous stretching surface with suction or blowing. - J. Math. Anal. Appl., vol.135, pp.568-580.

7.
Cortell R. (2007): Viscous flow and heat transfer over a nonlinearly stretching sheet. - Appl. Math. Compt., vol.184, pp.864-873.

8.
Crane L.J. (1970): Flow past a stretching plate. - ZAMP, vol.21, pp.645-647.

9.
Erickson L. E., Cha L. C. and Fan L. T. (1966): The cooling of a continuous flat sheet. - AICHE Chemical Engineering Progress Symposium Series, Heat Transfer-Los Angeles, vol.62, pp.157-165.

10.
Fang T. and Zhang J. (2010): Thermal boundary layers over a shrinking sheet: an analytical solution. - Acta Mech, vol.209, pp.325-343.

11.
Fang T. (2008): Boundary layer flow over a shrinking sheet with power law velocity. - Int. J. Heat Mass Transfer, vol.51, pp.5838-5843.

12.
Fisher E.G. (1976): Extrusion of plastics. - New York: Wiley.

13.
Goldstein S. (1965): On backward boundary layers and flow in converging passages. - J. Fluid Mech., vol.21, pp.33-45.

14.
Grubka L.J. and Bobba K.M. (1985): Heat transfer characteristics of a continuous stretching surface with variable temperature. - ASME J. of Heat Transfer vol.107, pp.248-250.

15.
Gupta P.S. and Gupta A.S. (1977): Heat and mass transfer on a stretching sheet with suction or blowing. - Can. J. Chem. Engng vol.55, pp.744-746.

16.
Hayat T., Abbas Z. and Javed T. (2007): On the analytical solution of magneto hydrodynamic flow of a second grade fluid over a shrinking sheet. - J. Appl. Mech. Trans., ASME, vol.74, pp.819-830.

17.
Henkes R.A.W. and Hoogendoorn C.J. (1989): Laminar natural convection boundary layer flow along a heated vertical plate in a stratified environment. - Int. J. Heat Mass Transfer, vol.32, pp.147-155.

18.
Keller H.B. (1992): Numerical Methods for Two-Point Boundary Value Problems. - New York: Dover Publ.

19.
Kulkarni A.K., Jacobs H.R. and Hwang J.J. (1987): Similarity solution for natural convection flow over an isothermal vertical wall immersed in thermally stratified medium. - Int. J. Heat Mass Transfer, vol.30, pp.691-698.

20.
Liao S.J. (2007): A new branch of solution of boundary layer flows over a permeable stretching plate. - Int. J. Non- Linear Mech., vol.42, pp.819-830.

21.
Liao S.J. (2005): A new branch of solutions of boundary layer flows over a stretching flat plate. - Int. J. Heat Mass Transfer, vol.48, pp.2529-2539.

22.
Mahapatra T.R., Nandy S.K., Vajravelu K. and Van Gorder R.A . (2010) : Stability analysis of fluid flow over a nonlinearly stretching sheet. - Archive of Applied Mechanics, accepted doi:10.1007/s00419-010-0423-x.

23.
Miklavcic M. and Wang C.Y. (2006): Viscous flow due to a shrinking sheet. - Q. Appl. Math., vol.64, pp.283-290.

24.
Prasad K.V., Vajravelu K. and Datti P.S. (2010): The effects of variable fluid properties on the hydromagnetic flow and heat transfer over a non-linearly stretching sheet. - Int. J. Thermal Sciences vol.49, pp.603-610.

25.
Sajid M., Hayat T, and Javed T. (2008): MHD rotating flow of a viscous fluid over a shrinking surface. Non-linear Dynamics, vol.51, pp.259-265.

26.
Sajid M., Hayat T., Asghar S. and Vajravelu K. (2008): Analytic solution for axisymmetric flow over a nonlinearly stretching sheet. - Archive of Applied Mechanics, vol.78, pp.127-134.

27.
Sajid M. and Hayat T. (2009): The application of homotopy analysis method for MHD viscous flow due to a shrinking sheet. - Chaos, Solitons and Fractals, vol.39, pp.1317-1323.

28.
Sakiadis B. C. (1961): Boundary layer behavior on continuous solid surfaces: I. Boundary-layer equations for two dimensional and axisymmetric flow. - A. I. Ch. E. J. 7, pp.26-28.

29.
Soundalgekar V.M. and Ramana Murthy T.V. (1980): Heat transfer in the flow past a continuous moving plate with variable temperature. - Warme und Stoffubertragung, vol.14, pp.91-93.

30.
Sweet E. and Van Gorder R.A. (2010): Exponential type solutions to a generalized Drinfel'd Sokolov equation. - Physica Scripta, vol.82, 03500.

31.
Tadmor Z. and Klein I. (1970): Engineering Principles of Plasticating Extrusion, Polymer Science and Engineering Series. - New York: Van Norstrand Reinhold.

32.
Tsou F. K. Sparrow E. M. and Goldstein R.J. (1967): Flow and heat transfer in the boundary layer on a continuous moving surface. - Int. J. Heat Mass Transfer, vol.10, pp.219-235.

33.
Vajravelu K. (2001): Viscous flow over a non-linearly stretching sheet. - Applied Mathematics and Computation, vol.124, pp.281-288.

34.
Van Gorder R.A. and. Vajravelu K. (2009): Multiple solutions for hydromagnetic flow of a second grade fluid over a stretching or shrinking sheet. - Quarterly of Applied Mathematics, accepted.

35.
Van Gorder R.A. and Vajravelu K. (2011): Existence and uniqueness results for a nonlinear differential equation arising in viscous flow over a nonlinearly stretching sheet. - Applied Mathematics Letters, vol., pp.238-242.

36.
Van Gorder R.A. and Vajravelu K. (2010): A general class of coupled nonlinear differential equations arising in self similar solutions of convective heat transfer problems. - Applied Mathematics and Computation, vol.217, pp.460-465.

37.
Van Gorder R.A. and Vajravelu K. (2010): A note on flow geometries and the similarity solutions of the boundary layer equations for a nonlinearly stretching sheet. - Archive of Applied Mechanics, vol.80, pp.1329-1332.

38.
Van Gorder R.A. (2011): First-order soliton perturbation theory for a generalized KdV model with stochastic forcing and damping. - Journal of Physics A: Mathematical and Theoretical, vol.44, 015201.

39.
Vleggaar J. (1977): Laminar boundary layer behaviour on continuous accelerating surfaces. - Chem. Engg. Sci., vol.32, pp.1517-1525.

 eISSN: 2353-9003 ISSN: 1734-4492 