ORIGINAL PAPER
Design Of Expanded Metal Meshes For Generation Of Turbulence In Shell-And-Tube Heat Exchangers For Industrial Applications
 
More details
Hide details
1
Process and Thermal, Industry, Brembana&Rolle, Italy
 
2
Process and thermal, Industry Brembana&Rolle, Italy
 
 
Submission date: 2025-01-15
 
 
Final revision date: 2025-05-26
 
 
Acceptance date: 2025-06-14
 
 
Online publication date: 2025-09-02
 
 
Publication date: 2025-09-02
 
 
Corresponding author
Marcello Garavaglia   

Process and Thermal, Industry, Brembana&Rolle, ViaVillino 1, 24030, Valbrembo, Italy
 
 
International Journal of Applied Mechanics and Engineering 2025;30(3):75-86
 
KEYWORDS
TOPICS
ABSTRACT
Control of turbulence through use of lattice meshes has been a main topic in fluid-dynamic literature since mid of last century. A specific class of lattice meshes, known as expanded metal meshes, EMS, has been proposed for baffles design in novel longitudinal flow heat exchanger technology for promotion of turbulence under limited pressure drops about two decades ago. Present investigation aims at developing a simple model for the design and optimization of suitable EMS geometry for its utilization as turbulence promoter in shell&tube heat exchangers for industrial applications. Novelty of approach relies on pressure drops based geometry design for improved functional product features.
REFERENCES (28)
1.
Thulukkanam K. (2013): Heat Exchanger Design Handbook, 2nd Edition.– CRC Press, Boca Raton, FL/US. DOI/10.1201/b14877.
 
2.
Gentry C.C. (1994): Rod-Baffle Heat Exchanger Design and Applications.– Int. Heat Transfer Conference 10, pp.137-142, DOI: 10.1615/IHTC10.5180.
 
3.
Rottoli M., Odry T., Agazzi D.and Notarbartolo E. (2016): EMbaffle® Heat Exchanger Technology - Innovative Heat Exchangers.– Springer Nature, Heidelberg, Germany, pp.341-361, DOI/10.1007/978-3-319-71641-1_11.
 
4.
Roach P.E. (1986): The generation of nearly isotropic turbulence by means of grids.– Int. J. Heat Fluid Flow, Amsterdam the Netherlands, vol.8 No.2, pp.82-92, DOI/10.1016/0142-727X(87)90001-4.
 
5.
Laws E.M. and Liversey J.L. (1978): Flow through screens.– Ann. Rev. Fluid Mechanics, San Mateo CA/US, vol.10, pp.247-266, DOI/10.1146/annurev.fl.10.010178.001335.
 
6.
Schubauer G.B., Spangenberg W.G. and Klebanoff P.S. (1950): Aerodynamic Characteristics of Damping Screens.– NACA TN 2001. DOI not available.
 
7.
Corrsin S. (1942): Decay of Turbulence behind Three Similar Grids. – M.Sc. Engineering Thesis, CalTech, Pasadena, CS/US. DOI:10.7907/GXRW-6609.
 
8.
Frenkiel F.N. (1948): The decay of isotropic turbulence.– J. Applied Mechanics, New York, NY/US, vol.15, No.4, pp.311-321, DOI/10.1115/1.4009853.
 
9.
Batchelor G.K. (1967): An Introduction to Fluid Dynamics – Cambridge University Press, Cambridge, UK, DOI /10.1017/CBO9780511800955.
 
10.
Baines W.D. and Peterson E.G. (1951): An investigation of flow through screens.– Transaction ASME, New York, NY/US, vol.73, pp.467-480, DOI:10.1115/1.4016280.
 
11.
Pinker R.A. and Herbert M.V.(1967): Pressure loss associated with compressible flow through square-mesh wire gauzes.– J. Mechanical Engineering Science, Thousand Oaks CA/US, vol.9, No.1, pp.11-23, DOI:10.1243/JMES_JOUR_1967_009_004_02.
 
12.
Iwaniszyn M., Sindera K., Gancarczyk A., Leszczyński B., Korpyś M., Suwak M., Kołodziej A. and Jodłowski P.J. (2022): Characterization of fluid flow and heat transfer of expanded metal meshes for catalytic processes.– Energies J., https://www.mdpi.com/journal/e..., DOI/10.3390/en15228437.
 
13.
Shirao P., Jagtap H., Magade P., Gadhave P. and Kamble D. (2024): Thermo-hydraulic analysis of fluid flowing through circular pipes with wire mesh inserts having varied mesh porosities.– Earth and Environmental Science - IOP Conference Series, DOI:10.1088/1755-1315/1285/1/012028.
 
14.
Smith D., Graciano C. and Martinez G. (2021): Expanded metal: a review of manufacturing, applications and structural performance.– Thin Walled Structures J., vol.10, Elsevier, DOI/10.1016/j.tws.2020.107371.
 
15.
Ghaemi S. (2020): Passive and active control of turbulent flows.– Physics of Fluids, vol.32, DOI/10.1063/5.0022548.
 
16.
Oshinowo O.M. (1997): Flow modifying Screens in Turbulent Flows.– M.Sc. Thesis, Toronto, DOI not available.
 
17.
Oshinowo L. (1999): Two dimensional flow deflection screen model.– J. Chemical Engineering, Hoboken NJ/US, vol.77, pp.122-126, DOI/10.1002/cjce.5450770120.
 
18.
Grant H.L. and Nisbet I.C.T. (1957): The inhomogeneity of grid turbulence.– J. Fluid Mechanics, Cambridge, UK, vol.2 No.3, pp.263-272, DOI/10.1017/S0022112057000117.
 
19.
Grzelak J. and Wiercinski Z. (2015): The decay power law in turbulence generated by grids.– Trans. Inst. Fluid Flow Machinery, Gdansk, Poland, vol.130, pp.93-107.
 
20.
Uberoi M.S. and Wallis S. (1967): Effect of grid geometry on turbulence decay.– The Physics of Fluid, Melville NY/US, vol.10, pp.1216-1224, DOI/10.1063/1.1762265.
 
21.
Inagaki A., Ishii D., Asaji T., Nakamura T., Watanabe N., Kikuchi T. and Takahashi K. (2020): Effect of blowdown wind tunnel inlet on the mainstream turbulence intensity.– Transactions on Gigaku, DOI:10.34468/GIGAKU.7.1_07006-1.
 
22.
Nie L.X., Yin Y., Yan L.Y. and Zhou S.W. (2021): Pressure drops measurements and simulations for the protective mesh screen before the gas turbine compressor.– Proceedings of the 2nd International Conference on Green Energy, Environment and Sustainable Development (GEESD2021), DOI:10.3233/ATDE210277.
 
23.
Jafari A., Emes M., Cazzolato B., Ghanadi F. and Arjomandi M. (2021): Wire mesh fences for manipulation of turbulence energy spectrum.– Experiments in Fluids J., vol.62, No.30, DOI/10.1007/s00348-021-03133-7.
 
24.
Wang Y., Yang G., Huang Y., Huang Y., Zhuan R. and Wu J. (2021): Analytical model of flow through screen pressure drop for metal wire screens considering the effects of pore structures.– Chemical Engineering Science J., vol.229, DOI/10.1016/j.ces.2020.116037.
 
25.
Oshinowo L. and Kuhn D.C.S. (2000): Turbulence decay behind expanded metal screens.– The Canadian J. Chemical Engineering, Hoboken NJ/US, vol.78, pp.1032-1039, DOI/10.1002/cjce.5450780602.
 
26.
O’Neill F.G. and Breddermann K. (2024): The contribution of mesh opening angle to the drag of netting panels.– Ocean Engineering J. vol.305, Elsevier, DOI/10.1016/j.oceaneng.2024.117959.
 
27.
Perrone F., Brignone, Micali G. and Rottoli M. (2014): Grid geometry effects on pressure drops and heat transfer in an EMbaffle® heat exchanger.– International CAE Conference 2014, Verona, Italy. DOI not available.
 
28.
Garavaglia M., Grisoni F., Mantegazza M. and Rottoli M. (2023): Advanced shell and tube longitudinal flow technology for improved performances in the process industry.– Heat Transfer, Advances in Fundamentals and Applications, InTech Open, Rijeka, Croatia, DOI: 10.5772/intechopen.113132.
 
eISSN:2353-9003
ISSN:1734-4492
Journals System - logo
Scroll to top