Failure analysis and Mechanical Behaviour of A60 steel Bollards Used In Port Infrastructure
More details
Hide details
Department of Materials Engineering, The national higher school of mining of Rabat (ENSMR)
Department of Industrial and Civil Sciences and Technologies, Abdelmalek Essaadi Tetouan, Morocco
Department of Materials Engineering, The national higher school of mining of Rabat (ENSMR), Morocco
Submission date: 2024-02-14
Final revision date: 2024-03-27
Acceptance date: 2024-04-29
Online publication date: 2024-06-19
Publication date: 2024-06-27
Corresponding author
Mohammed Khalil El Kouifat   

Department of Materials Engineering, The national higher school of mining of Rabat (ENSMR)
International Journal of Applied Mechanics and Engineering 2024;29(2):67-78
The failure mechanisms and mechanical properties of bollards present significant risks in port and maritime engineering thereby calling for a thorough investigation into these aspects. This study highlights the significance of elements like tensile strength shear stress and service loads while examining the difficulties related to metal bollard failures. This paper presents a case study on A60 steel bollards that combines numerical simulations with experimental testing using Catia and Mathcad software. The results reveal that even as the mechanical houses adjust with A60 steel standards, under accurate ambit and a hundred-ton load, compactness and shear stresses exceed the limit attrition of the bollard. The acceptable strain considerably surpasses the adaptable limit, advertence impending failure. The analysis recommends layout adjustments, presenting a higher array of the annular part of the demonstrated bollard and a safety factor of at least 1. 5 to boost the bollard attrition and forestall hurt under a hundred-ton load. This research contributes advantageous insights into bollard layout, acclamation real- global demanding situations, and promoting safety in maritime infrastructure.
Cho S.-R., Choung J., Oh C.-M., Lee K.-S. and Kim J.-Y. (2010): Ultimate load capacities of mooring bollards and hull foundation structures.– Ocean Eng., vol.37, No.8-9, pp.770-776, doi: 10.1016/j.oceaneng.2010.02.011.
Roberts C.M. and Skalaski R.P. (2016): Case study: bollard load testing at US naval facilities.– Ports, pp.340-350.
Ravaliya N.R., Kumar S. and Gupta P.K. (2023): Finite element analysis of hollow circular steel tube subjected to lateral impact load: a comprehensive study.– J. Fail. Anal. Prev., vol.23, No.5, pp.2275-2294, doi: 10.1007/s11668-023-01778-6.
Campbell L.A., Butler J.A. and Donaldson R.J. (2021): Mooring line failures: Considerations for the installation of barrier protection.– Australasian Coasts & Ports 2021, Te Oranga Takutai, Adapt and Thrive: Te Oranga Takutai, Adapt and Thrive, New Zealand Coastal Society Christchurch, NZ, 2022, pp.230-235.
Maduliat S., Ngo T.D., Tran P. and Lumantarna R. (2015): Performance of hollow steel tube bollards under quasi-static and lateral impact load.– Thin-Walled Struct., vol.88, pp.41-47, doi: 10.1016/j.tws.2014.11.024.
Daramola O., Adewuyi B. and Oladele I. (2011): Corrosion behaviour of heat treated rolled medium carbon steel in marine environment.– J. Miner. Mater. Charact. Eng., vol.10, No.10, pp.888-903.
Sotoodeh K. (2021): A review and analysis of industrial valve material failures due to corrosion and proposals for prevention measures based on industrial experiences in the offshore sector of the oil and gas industry.– J. Fail. Anal. Prev., vol.21, No.1, pp.261-267, doi: 10.1007/s11668-020-01064-9.
Khadom A.A. (2015): Protection of steel corrosion reaction by benzotriazoles: a historical background.– J. Fail. Anal. Prev., vol.15, pp.794-802, doi: 10.1007/s11668-015-0043-4.
Wu L., Xiang Z., Shu D., Liu M., Yang J. and Li M. (2023): Dynamic inversion model of the mooring force on a floating bollard of a sea lock.– J. Mar. Sci. Eng., vol.11, No.7, p.1374, doi: 10.3390/jmse11071374.
Dawson H. and Tennant D. (2008): Inelastic dynamic finite-element design of bollard systems to impact loading.– Structures Congress 2008: Crossing Borders, pp.1-10. doi: 10.1061/41016(314)152.
Hu B. and Li G.-Q. (2016): Maximum impact force of truck frontal crashing into antiram bollard systems.– J. Struct. Eng., vol.142, No.12, p. 04016125, doi: 10.1061/(ASCE)ST.1943-541X.0001612.
Roberts C. M. (2022): Mooring hardware load testing an industry update.– Ports 2022, pp.73-80.
Wu L., Xiang Z., Shu D., Liu M., Yang J. and Li M. (2023): An intelligent monitoring system for the force characteristics of floating bollards in a ship lock.– J. Mar. Sci. Eng., vol.11, No.10, p.1948, doi: 10.3390/jmse11101948.
Pin Y., Weili W., Guoping D., Jianxin L. and Zhiqiang L. (2022): Safety monitoring of mooring bollard structure based on optical fiber sensing technology.– 5th World Conf. on Mech. Eng. and Intelligent Manufacturing (WCMEIM), IEEE, pp.604-609. doi: 10.1109/WCMEIM56910.2022.10021362.
Sydorenko I., Tonkonogyi V., Semenyuk V., Lingur V. and Zhang Y. (2022): Stress-strain state of the floating bollard’s structure for a shipping gateway.– Advances in Design, Simulation and Manufacturing, pp.23-32, doi: 10.1007/978-3-031-06044-1_3.
Zhang Y., Sydorenko I., Prokopovych I., Zhang Y. and Voronenko S. (2021): Simulation of a floating bollard of a ship lock by the finite element method.– Odes’kyi Politechnichnyi Universytet, No.1, pp.5-12.
Aegerter J., Kühn H.-J., Frenz H. and Weißmüller C. (2011): EN ISO 6892-1: 2009 tensile testing: initial experience from the practical implementation of the new standard.– Mater. Test., vol.53, No.10, pp.595-603, doi: 10.3139/120.110269.
AENOR UNE-EN ISO 6507-1 (2006): Metallic Materials. Vickers Hardness Test. Part 1: Test Method (ISO 6507-1: 2005).
Bourahla N. (2005): Strength of Basic Materials (in French).– Univ. Saad Dahlab Blida Ed., GEOTEC, p.290.
Balmer G. (1952): A general analysis solution for Mohr’s envelope.– Proc. ASTM, pp.1260-1271.
Mises von R. (1913): Mechanics of solid bodies in the plastic-deformable state (in German).– Nachrichten von Ges. Wiss. zu Gött. Math.-Phys. Kl., vol.1913, pp.582-592.
Journals System - logo
Scroll to top