Numerical Investigation and Cost Analysis of FRP-Concrete Unidirectional Hybrid Slabs
More details
Hide details
Strength of Materials and Structural Engineering Department, Polytechnic University of Catalonia, Colom 11, TR45, 08222, Terrassa, Spain
Department of Continuum Mechanics and Structures, Escuela de Caminos, Canales y Puertos, Universidad Politécnica de Madrid, 28040, Madrid, Spain
Online publication date: 2021-12-07
Publication date: 2021-12-01
International Journal of Applied Mechanics and Engineering 2021;26(4):156-166
Fiber-reinforced polymer (FRP) has been commonly used to reinforce concrete structures. The kinds of FRP demonstrate an effective alternative to various methods of reinforcement in concrete structures subjected to bad environmental conditions which cause corrosion and damage to concrete. Due to their lightweight, high strength, and high corrosion and fatigue resistance, Fiber Reinforced Polymer (FRP) composites have been widely applied in steel substitution during revitalization interventions. This paper presents numerical three-points bending tests on different models to investigate the effect of the reinforcements; Carbon, Glass, and Aramid fibers to find the corresponding cost of each one. Also, there is an available experimental model for verifying the results of the FEM that demonstrated broad agreement with the experimental statement, concerning the load-displacement curve. After validating the models, alternative designs such as type of the FRP, position of the FRP, and amount of the FRP usage were numerically tested to study the influence of each on the load-bearing capacity. The results showed that the best configuration would be one with GFRP and the load-bearing capacity is around 9 kN in the optimum design.
Al-Rousan R.Z., Alhassan M.A., and Al-Salman H. (2017): Impact resistance of polypropylene fiber reinforced concrete two-way slabs.– Struct. Eng. Mech., vol.62, No.3, pp.373-380, doi:10.12989/sem.2017.62.3.373.
Yılmaz T., Kıraç N., Anil Ö., Erdem R.T. and Sezer C. (2018): Low-velocity impact behaviour of two way RC slab strengthening with CFRP strips.– Constr. Build. Mater., vol.186, pp.1046-1063, doi:10.1016/j.conbuildmat.2018.08.027.
Abed F. and Alhafiz A.R. (2019): Effect of basalt fibers on the flexural behavior of concrete beams reinforced with BFRP bars.– Compos. Struct., vol.215, pp.23-34, doi: 10.1016/j.compstruct.2019.02.050.
Mahboob A., Gil L., Bernat-Maso E. and Eskenati A.R. (2021): Experimental and numerical study of shear interface response of hybrid thin CFRP–Concrete slabs.– Materials (Basel), vol.14, No.18, doi:10.3390/ma14185184.
Eskenati A.R., Mahboob A., Alirezaie A., Askari R. and Kolbadi S.M.S. (2021): Investigating the effect of longitudinal gallery on dynamical response of gravity concrete dams using fem.– J. South. Jiao. Uni. vol.56, pp.804–811, doi:10.35741/issn.0258-2724.56.4.69.
Fam A. and Rizkalla S. (2003): Large scale testing and analysis of hybrid concrete/composite tubes for circular beam-column applications.– Constr. Build. Mater., vol.17, No.6-7, pp.507-516, doi: 10.1016/S0950-0618(03)00048-5.
Ebead U. and Marzouk H. (2004): Fiber-reinforced polymer strengthening of two-way slabs.– ACI Struct. J., vol.101, No.4, pp.650-669, doi: 10.14359/13387.
Toutanji H., Zhao L. and Zhang Y. (2006): Flexural behavior of reinforced concrete beams externally strengthened with CFRP sheets bonded with an inorganic matrix.– Eng. Struct., vol.28, No.4, pp.557-566, doi: 10.1016/j.engstruct.2005.09.011.
Hawileh R.A., H.A. Rasheed, J.A. Abdalla and A.K. Al-Tamimi (2014): Behavior of reinforced concrete beams strengthened with externally bonded hybrid fiber reinforced polymer systems.– Mater. Des., vol.53, pp.972-982, doi: 10.1016/j.matdes.2013.07.087.
El-Gamal S.E., Al-Nuaimi A., Al-Saidy A. and Al-Lawati A. (2016): Efficiency of near surface mounted technique using fiber reinforced polymers for the flexural strengthening of RC beams.– Constr. Build. Mater., vol.118, pp.52-62, doi: 10.1016/j.conbuildmat.2016.04.152.
Micelli F., Annaiah R.H. and Antonio N. (2002): Strengthening of short shear span reinforced concrete T joists with fiber-reinforced plasic composites.– J. Compos. Constr., vol.6, No.4, pp.264-271, doi: 10.1061/(ASCE)1090-0268(2002)6:4(264).
Rabczuk T., Akkermann J. and Eibl J. (2005): A numerical model for reinforced concrete structures. –Int. J. Solids Struct., vol.42, No.5-6, pp.1327-1354, doi: 10.1016/j.ijsolstr.2004.07.019.
Rabczuk T. and Eibl J. (2004): Numerical analysis of prestressed concrete beams using a coupled element free Galerkin/finite element approach.– Int. J. Solids Struct., vol.41, No.3-4, pp.1061-1080, doi: 10.1016/j.ijsolstr.2003.09.040.
Nikola D., Triantafillou T.C. and Urs M. (1995): Innovative design of FRP Combined with concrete: short-term behavior.– J. Struct. Eng., vol.121, No.7, pp.1069-1078, doi: 10.1061/(ASCE)0733-9445(1995)121:7(1069).
Nguyen H., Mutsuyoshi H. and Zatar W. (2015): Hybrid FRP-UHPFRC composite girders: Part 1 - experimental and numerical approach.– Compos. Struct., vol.125, pp.631-652, doi: 10.1016/j.compstruct.2014.10.038.
Liang Q.Q., Uy B., Bradford M.A. and Ronagh H.R. (2005): Strength analysis of steel-concrete composite beams in combined bending and shear.– J. Struct. Eng., vol.131, No.10, pp.1593-1600, doi: 10.1061/(ASCE)0733-9445(2005)131:10(1593).
Ban H. and Bradford M.A. (2013): Flexural behaviour of composite beams with high strength steel.– Eng. Struct., vol.56, pp.1130-1141, doi: 10.1016/j.engstruct.2013.06.040.
Nie J., Fan J. and Cai C.S. (2004): Stiffness and deflection of steel-concrete composite beams under negative bending.– J. Struct. Eng., vol.130, No.11, pp.1842-1851, doi: 10.1061/(ASCE)0733-9445(2004)130:11(1842).
Correia J.R., Branco F.A. and Ferreira J.G. (2007): Flexural behaviour of GFRP-concrete hybrid beams with interconnection slip.– Compos. Struct., vol.77, No.1, pp.66-78, doi: 10.1016/j.compstruct.2005.06.003.
Joseph R.J. and Silvakumar P. (2011): Linear Behaviour of carbon fibre reinforced polymer plate bonded beam.– in International conference on emerging Technology Trends (ICETT), International Journal of Computer Applications (IJCA), pp.1-6.
Enochsson Ola (2005): CFRP Strengthening of Concrete Slabs, with and without Openings.– Luleå University of Technology.
Kim Y.J., Longworth J.M.,Wight R.G and Green M.F (2008): Flexure of Two-way slabs strengthened with prestressed or nonprestressed CFRP sheets.– J. Compos. Constr., vol.12, No.4, pp.366-374, doi: 10.1061/(ASCE)1090-0268(2008)12:4(366).
Loo K.Y.M, Foster S.J. and Smith S.T. (2012): FE modeling of CFRP-repaired RC Beams subjected to fatigue loading.– J. Compos. Constr., vol.16, No.5, pp.572-580, doi: 10.1061/(ASCE)CC.1943-5614.0000286.
Hörmann M., Menrath H. and Ramm E. (2002): Numerical investigation of fiber reinforced polymers poststrengthened concrete slabs.– J. Eng. Mech., vol.128, No.5, pp.552-561, doi: 10.1061/(ASCE)0733-9399(2002)128:5(552).
Naser M., Hawileh R., Abdalla J.A. and Al-Tamimi A. (2012): Bond behavior of CFRP cured laminates: experimental and numerical investigation.– J. Eng. Mater. Technol., vol.134, No.2, pp.021002-021010, doi: 10.1115/1.4003565.
Martin N.and Khaled S. (2013): Effect of prestressing on the performance of GFRP-Reinforced concrete slab bridge strips.– J. Compos. Constr., vol.17, No.2, pp.188-196, doi: 10.1061/(ASCE)CC.1943-5614.0000326.
Taketo U., Hiroshi M., Futoshi K. and Sudhir M. (2002): Use of Fiber reinforced polymer composites as reinforcing material for concrete.– J. Mater. Civ. Eng., vol.14, No.3, pp.191-209, doi: 10.1061/(ASCE)0899-1561(2002)14:3(191).
Makarand H. and Halpin D.W. (2000): Assessment of life-cycle benefit-cost of composites in construction.– J. Compos. Constr., vol.4, No.3, pp.103-111, doi: 10.1061/(ASCE)1090-0268(2000)4:3(103).
Phillips K.A., Harlan M., Roberts-Wollmann C.L. and Cousins T.E. (2005): Performance of a Bridge Deck with Glass Fiber Reinforced Polymer Bars as the Top Mat of Reinforcement.– Virginia Transportation Research Council.
Berg A.C., Bank L.C., Oliva M.G. and Russell J.S. (2006): Construction and cost analysis of an FRP reinforced concrete bridge deck.– Constr. Build. Mater., vol.20, No.8, pp.515-526, doi: 10.1016/j.conbuildmat.2005.02.007.
Eamon C.D., Jensen E.A., Grace N.F. and Xiuwei S. (2012): Life-cycle cost analysis of alternative reinforcement materials for bridge superstructures considering cost and maintenance uncertainties.– J. Mater. Civ. Eng., vol.24, No.4, pp.373-380, doi: 10.1061/(ASCE)MT.1943-5533.0000398.
American Society for Testing and Materials (2002): American Society for Testing and Materials. ASTM C805-02 Standard Test Method for Rebound Number of Hardened Concrete.– Am. Soc. Test. Mater.
Mahboob A., Gil L., Bernat-Maso E. and Eskenati A.R. (2021): Flexible fiber fabric for FRP–concrete connection of thin hybrid slabs.– Polymers (Basel), vol.13, No.17, doi:10.3390/polym13172862.
Vilanova I., Torres L., Baena M. and Llorens M. (2016): Numerical simulation of bond-slip interface and tension stiffening in GFRP RC tensile elements.– Compos. Struct., vol.153, pp.504-513, doi: 10.1016/j.compstruct.2016.06.048.
Genikomsou A. and Polak M.A. (2017): Finite element simulation of concrete slabs with various placement and amount of shear bolts.– Procedia Eng., vol.193, pp.313-320, doi:10.1016/j.proeng.2017.06.219.
Liu Y., Lenz T., Goldack A. and Schlaich M. (2013): Study on the flexural behaviour of CFRP-grid reinforced concrete one-way slabs. –Proc. 4th Asia-Pacific Conf. FRP Struct. APFIS 2013, pp.11-13.
Raza A., Masood B. and Hussain I. (2020): Finite element modelling and theoretical predictions of FRP-reinforced concrete columns confined with various FRP-tubes.– Structures, vol.26, pp.626-638, 2020, doi: 10.1016/j.istruc.2020.04.033.
Sharaky I.A., Baena M., Barris C., Sallam H.E.M. and Torres L. (2018): Effect of axial stiffness of NSM FRP reinforcement and concrete cover confinement on flexural behaviour of strengthened RC beams: experimental and numerical study.– Eng. Struct., vol.173, pp.987-1001, doi:10.1016/j.engstruct.2018.07.062.
Journals System - logo
Scroll to top