Generalized Plane Waves in a Rotating Thermoelastic Double Porous Solid
More details
Hide details
Department of Mathematics, H.P.University, Regional Center, Dharmshala, HP, India
Department of Mathematics, Indira Gandhi University, Meerpur, Rewari, HR, India
Online publication date: 2022-12-03
Publication date: 2022-12-01
International Journal of Applied Mechanics and Engineering 2022;27(4):138-154
The propagation of plane waves in a rotating homogeneous, isotropic, thermoelastic solid with double porosity following Lord-Shulman’s theory of thermoelasticity has been investigated. It is assumed that the medium rotates about an axis normal to the surface with a uniform angular velocity. There may exist five coupled waves that evolved due to the longitudinal, transverse disturbance, voids of type-I and type-II, and temperature change in the medium. The secular equation for the model under consideration has been derived with the help of formal solutions and boundary conditions. The amplitude of displacements, temperature change and volume fraction fields for voids of type-I and type-II have also been computed analytically. Finally, numerical computations have been carried out for magnesium crystal material to understand the behavior of amplitude of phase velocity, penetration depth, specific loss, displacement components, temperature change, and volume fraction field due to type-I and type-II voids corresponding to the different rotation rates. Various graphs have been plotted to support the analytical findings. The study may be used in the development of rotation sensors, material design and thermal efficiency.
Lord H. W. and Shulman Y. (1967): A generalized dynamical theory of thermoelasticity.– J. Mech. Phys. Solids, vol.15, No.5, pp.299-309, doi: 10.1016/0022-5096(67)90024-5.
Nunziato J. W. and Cowin S. C. (1979): A nonlinear theory of elastic materials with voids.– Arch. Ration. Mech. Anal., vol.72, No.2, pp.175-201, doi: 10.1007/BF00249363.
Wilson R. K. and Aifantis E. C. (1982): On the theory of consolidation with double porosity.– Int. J. Eng. Sci., vol.20, No.9, pp.1009-1035, doi: 10.1016/0020-7225(82)90036-2.
Ieşan D. (1986): A theory of thermoelastic materials with voids.– Acta Mech., vol.60, No.1, pp.67-89, doi: 10.1007/BF01302942.
Dhaliwal R. S. and Wang J. (1995): A heat-flux dependent theory of thermoelasticity with voids.– Acta Mech., vol.110, No.1, pp.33-39, doi: 10.1007/BF01215413.
Khalili N. and Selvadurai A. P. S. (2003): A fully coupled constitutive model for thermo-hydro-mechanical analysis in elastic media with double porosity.– Geophys. Res. Lett., vol.30, No.24, doi: 10.1029/2003GL018838.
Sharma J. N. and Pathania V. (2003): Generalized thermoelastic Lamb waves in a plate bordered with layers of inviscid liquid.– J. Sound Vib., vol.268, No.5, pp.897-916, doi: 10.1016/S0022-460X(02)01639-5.
Sharma J. N. and Pathania V. (2005): Propagation of leaky surface waves in thermoelastic solids due to inviscid fluid loadings.– J. Therm. Stress., vol.28, No.5, pp.485-519, doi: 10.1080/01495730590925010.
Othman M. I. A. and Singh B. (2007): The effect of rotation on generalized micropolar thermoelasticity for a half-space under five theories.– Int. J. Solids Struct., vol.44, No.9, pp.2748-2762, doi: 10.1016/j.ijsolstr.2006.08.016.
Sharma J. N. and Grover D. (2009): Body wave propagation in rotating thermoelastic media.– Mech. Res. Commun., vol.36, No.6, pp.715-721, doi: 10.1016/j.mechrescom.2009.03.005.
Sharma J. and Kaur D. (2010): Rayleigh waves in rotating thermoelastic solids with voids.– Int. J. appl. Math. Mech, vol.6, No.3, pp.43-61.
Othman M. I. A. and Abbas I. A. (2011): Effect of rotation on plane waves at the free surface of a fibre-reinforced thermoelastic half-space using the finite element method.– Meccanica, vol.46, No.2, pp.413-421, doi: 10.1007/s11012-010-9322-z.
Ieşan D. and Quintanilla R. (2014): On a theory of thermoelastic materials with a double porosity structure.– J. Therm. Stress., vol.37, No.9, pp.1017-1036, doi: 10.1080/01495739.2014.914776.
Kumar R., Vohra R. and Gorla M. G. (2015): State space approach to boundary value problem for thermoelastic material with double porosity.– Appl. Math. Comput., vol.271, pp.1038-1052, doi: 10.1016/j.amc.2015.09.070.
Farhan A. M. and Abd-Alla A. M. (2018): Effect of rotation on the surface wave propagation in magneto-thermoelastic materials with voids.– J. Ocean Eng. Sci., vol.3, No.4, pp.334-342, doi: 10.1016/j.joes.2018.10.003.
Barak M. S. and Kaliraman V. (2018): Reflection and transmission of elastic waves from an imperfect boundary between micropolar elastic solid half-space and fluid-saturated porous solid half-space.– Mech. Adv. Mater. Struct., vol.26, No.14, pp.1226-1233.
Barak M. S. and Kaliraman V. (2019): Reflection and transmission of elastic waves from an imperfect boundary between micropolar elastic solid half-space and fluid-saturated porous solid half-space.– Mech. Adv. Mater. Struct., vol.26, No.14, pp.1226-1233, doi: 10.1080/15376494.2018.1432795.
Barak M. S., Kumar M., Kumari M. and Singh A. (2020): Inhomogeneous wave propagation in partially saturated soils.– Wave Motion, vol.93, p.102470, doi: 10.1016/j.wavemoti.2019.102470.
Yadav A. K. (2020): Reflection of plane waves from the free surface of a rotating orthotropic magneto-thermoelastic solid half-space with diffusion.– J. Therm. Stress., vol.44, No.1, pp.86-106, doi: 10.1080/01495739.2020.1842273.
Yadav A. K. (2021): Thermoelastic waves in a fractional-order initially stressed micropolar diffusive porous medium.– J. Ocean Eng. Sci., vol.6, No.4, pp.376-388, doi: 10.1016/j.joes.2021.04.001.
Yadav A. K. (2021): Reflection of plane waves in a fraction-order generalized magneto-thermoelasticity in a rotating triclinic solid half-space.– Mech. Adv. Mater. Struct., pp.1-18, doi: 10.1080/15376494.2021.1926017.
Yadav A. K. (2021): Effect of impedance boundary on the reflection of plane waves in fraction-order thermoelasticity in an initially stressed rotating half-space with a magnetic field.– Int. J. Thermophys., vol.42, No.1, p.3, doi: 10.1007/s10765-020-02753-1.
Yadav A. K. (2021): Reflection of plane waves in a micropolar thermo-diffusion porous medium.– Waves in Random and Complex Media, 2021, doi: 10.1080/17455030.2021.1956014.
Yadav A. K. (2021): Magnetothermoelastic waves in a rotating orthotropic medium with diffusion.– J. Eng. Phys. Thermophys., vol.94, No.6, pp.1628-1637, doi: 10.1007/s10891-021-02444-0.
Barak M.S. and Dhankhar Priti. (2022): Effect of inclined load on a functionally graded fiber-reinforced thermoelastic medium with temperature-dependent properties.– Acta Mechanica, vol.233, pp.3645-3662, doi: 10.1007/s00707-022-03293-5.
Pathania V. and Dhiman P. (2021): On Lamb-type waves in a poro-thermoelastic plate immersed in the inviscid fluid.– Waves in Random and Complex Media, pp.1-27, doi: 10.1080/17455030.2021.2014599.
Pathania V. and Joshi P. (2021): Waves in thermoelastic solid half-space containing voids with liquid loadings.– J. Appl. Math. Mech. / Zeitschrift für Angew. Math. und Mech. ZAMM, vol.101, No.12, pp.1-19, doi: 10.1002/zamm.202100093.
Kumari M., Barak M. S., Singh A. and Kumar M. (2021): Effect of various physical properties on the reflection coefficients of inhomogeneous waves at the stress-free surface of partially saturated soils induced by obliquely incident fast P-wave.– J. Ocean Eng. Sci., vol.7, No.3, pp.225-236.
Kumari M., Singh A., Barak M. S. and Kumar M. (2022): Horizontal and vertical motion at the surface of partially saturated soils layer sandwiched between water and elastic solid.– Waves in Random and Complex Media, pp.1-25, doi: 10.1080/17455030.2022.2045043.
Sharma J.N., Grover D. and Kaur D. (2011): Mathematical modeling and analysis of bulk waves in rotating generalized thermoelastic media with voids.– Applied Mathematical Modelling, vol.35, pp.3396-3407, doi: 10.1016/j.amp.2011.01.014.
Singh D., Kumar D. and Tomar S. K. (2020): Plane harmonic waves in a thermoelastic solid with double porosity.– Math. Mech. Solids, vol.25, No.4, pp.869-886, doi: 10.1177/1081286519890053.
Journals System - logo
Scroll to top