ORIGINAL PAPER
Experimental and Numerical Study on the Effect of Creep Behavior on Epoxy Composites Reinforced with Yttrium Oxide Powder
,
 
,
 
 
 
More details
Hide details
1
Middle Technical University, Technical Engineering College-Baghdad, Baghdad, Iraq
 
 
Online publication date: 2020-11-26
 
 
Publication date: 2020-12-01
 
 
International Journal of Applied Mechanics and Engineering 2020;25(4):203-213
 
KEYWORDS
ABSTRACT
The creep test is one of the important approaches to determining some mechanical properties of composite materials. This study was carried out to investigate the creep behaviour of an epoxy composite material that was reinforced with Y2O3 powder at weight ratios of 2%, 7%, 12%, 17% and 22%. Each volume ratio was subjected to five loads over the range of 1N to5N at a constant temperature of 16 ± 2°C. In this work, creep behaviour, stress and elasticity modulus were studied through experimental and numerical analyses. Results showed that increasing the weight ratio of Y2O3 powder enhanced creep characteristics.
 
REFERENCES (12)
1.
AL-Hassani E.S. and Areef S.R. (2010): The effect of fiber orientation on creep behavior and flextural strength in epoxy composites. – Engineering and Technology Journal, vol.28, pp.1281-1289.
 
2.
Glaskova T.K. and Aniskevich A. (2009): Creep behavior of epoxy/clay nanocomposite. – Proceedings of International Conference on Composite Materials (ICCM-17), Edinburgh, UK.
 
3.
Subramanian C., Al Mamari A.K.H and Senthilvelan S. (2014): Effect of fiber length on the short-term flexural creep behavior of polypropylene. – International Journal of Students' Res Technol. Manage, vol.2, pp.157-162.
 
4.
Papanicolaou G., Xepapadaki A. and Zarouchas D. (2009): Effect of water uptake on creep behaviour of glass– epoxy composites. – Plastics, Rubber and Composites, vol.38, pp.72-79.
 
5.
Bakonyi P. and Vas L.M. (2013): Analysis of the creep behavior of polypropylene and glass fiber reinforced polypropylene composites. – In Materials Science Forum, pp.302-307.
 
6.
Lorandi N.P., Cioffi M.O.H., Shigue C. and Ornaghi H.L. (2018): On the creep behavior of carbon/epoxy non-crimp fabric composites. – Materials Research, vol.21.
 
7.
Zhai Z., Jiang B. and Drummer D. (2018): Tensile creep behavior of quasi-unidirectional e-glass fabric reinforced polypropylene composite. – Polymers, vol.10, p.661.
 
8.
Fu K., Chang Y., Tang Y. and Zheng B. (2014): Effect of loading rate on the creep behaviour of epoxy resin insulators by nanoindentation. – Journal of Materials Science: Materials in Electronics, vol.25, pp.3552-3558.
 
9.
ASTM D638 (2010): Standard test method for tensile properties of plastics. – ASTM International, West Conshohocken. United States.
 
10.
ASTM D2990 (2004): Standard test methods for tensile, compressive, and flexural creep and creep-rupture of plastics. – ASTM International. West Conshohocken. United States.
 
11.
Dropik M.J., Johnson D.H. and Roth D.E. (2002): Developing an ANSYS creep model for polypropylene from experimental data. – In Proceedings of International ANSYS Conference.
 
12.
Bledzki A.K. and Faruk O. (2004): Creep and impact properties of wood fibre–polypropylene composites: influence of temperature and moisture content. – Composites Science and Technology, vol.64, pp.693-700.
 
eISSN:2353-9003
ISSN:1734-4492
Journals System - logo
Scroll to top