ORIGINAL PAPER
Entropy Generation Analysis OF Mhd Micropolar – Nanofluid Flow Over A Moved And Permeable Vertical Plate
 
More details
Hide details
1
Mechanical engineering, Biomaterials and phenomena laboratory, Algeria
 
2
Mechanical engineering, Biomaterials and transport phenomena, Algeria
 
 
Submission date: 2023-10-27
 
 
Acceptance date: 2023-11-24
 
 
Online publication date: 2024-03-26
 
 
Publication date: 2024-03-27
 
 
Corresponding author
Najib Mohamed Bouaziz   

Mechanical engineering, Biomaterials and transport phenomena, Pole univesitaire, 26000, Medea, Algeria
 
 
International Journal of Applied Mechanics and Engineering 2024;29(1):73-89
 
KEYWORDS
TOPICS
ABSTRACT
The work's goal is to learn more about how a magnetic field, Brownian motion, and thermophoresis diffusion influence convective heat transfer in a micropolar-nanofluid flow's laminar boundary layer. Near a vertically moving, permeable plate, the complex fluid is subjected to MHD. The MATLAB application bvp4c was utilized to simplify the governing nonlinear and coupled equations for the micropolar-nanofluid, leading to the solution of the ensuing ordinary differential equations (ODEs). Graphs have been used to analyze the effect of different relevant active factors on the flow field and temperature. The results demonstrate that the micro-rotation of the nanoparticles taken into account and in suspension becomes significant for the complex fluid in the presence of the magnetic field. Analysis of the generation entropy shows that the surface is a significant source of irreversibility. There is no discernible effect of micropolarity on the relationship between Brownian and thermophoresis numbers and entropy generation.
 
REFERENCES (32)
1.
Moghaddami M., Seyedehsan E.S., and Siavashi M. (2012): Entropy generation analysis of nanofluid flow in turbulent and laminar regimes.– Journal of Computational and Theoretical Nanoscience, vol.9, pp.1586-1595. https://doi.org/10.1166/jctn.2....
 
2.
Mondal P. and Mahapatra T.R. (2021): MHD double-diffusive mixed convection and entropy generation of nanofluid in a trapezoidal cavity.– International Journal of Mechanical Science, vol.208, pp.106-655. https://doi.org/10.1016/j.ijme....
 
3.
Abbasi F.M., Shanakhat I. and Shehzad S.A. (2019): Entropy generation analysis for peristalsis of nanofluid with temperature dependent viscosity and Hall effects.– Journal of Magnetism and Magnetic Materials, vol.474, pp.434-441, https://doi.org/10.1016/j.jmmm....
 
4.
Shafee A., Haq R.U., Sheikholeslami M., Herki J.A.A. and Nguyen T.K. (2019): An entropy generation analysis for MHD water based Fe3O4 ferrofluid through a porous semi annulus cavity via CVFEM.– International Communications in Heat and Mass Transfer, vol.108, pp.104-295. https://doi.org/10.1016/j.iche....
 
5.
Madhu M., Shashikumar N.S., Gireesha B.J. and Kisha B.J. (2019): Second law analysis of Powell-Eyring fluid flow through an inclined microchannel with thermal radiation.– Physica Scripta, vol.94, pp.125-205, https://ui.adsabs.harvard.edu/....
 
6.
Madhu M., Shashikumar N.S., Mahanthesh B., Gireesha B.J. and Kishan N. (2019): Heat transfer and entropy generation analysis of non-Newtonian fluid flow through vertical microchannel with convective boundary condition.– Applied Mathematics and Mechanics, vol.40, pp.1285-1300, https://doi.org/10.1007/s10483...- 9.
 
7.
Akbar Y., Abbasi F.M. and Shehzad S.A. (2020): Thermal radiation and Hall efects in mixed convective peristaltic transport of nanofuid with entropy generation.– Applied Nanoscience, vol.10, pp.5421-5433, https://doi.org/10.1007/s13204....
 
8.
Matin M.H., Nobari M.R.H and Jahangiri P. (2012): Entropy analysis in mixed convection MHD flow of nanofluid over a non-linear stretching sheet.– Journal of Thermal Science and Technology, vol.7, pp.104-119, https://doi.org/10.1299/jtst.7....
 
9.
BiancoV., Manca O. and Nardini S. (2014): Entropy generation analysis of turbulent convection flow of Al2O3–water nanofluid in a circular tube subjected to constant wall heat flux.– Energy Conversion and Management, vol.77, pp.306-314, https://doi.org/10.1016/j.enco....
 
10.
Das S., Chakraborty S. and Jana R.N. (2021): Entropy analysis of Poiseuille nanofluid flow in a porous channel with slip and convective boundary conditions under magnetic field.– World Journal of Engineering, https://doi.org/10.1108/WJE-12....
 
11.
Shah Z., Kumam P. and Deebani W. (2020): Radiative MHD Casson nanofuid flow with activation energy and chemical reaction over past nonlinearly stretching surface through entropy generation.– Scientific Report, vol.10, pp.1-14, https://doi.org/10.1038/s41598....
 
12.
Mirzaee M. and Lakzian E. (2017): Entropy generation analysis of eccentric cylinders pair sources on nanofluid natural convection with non-Boussinesq state.– Tech. Adv. Powder, vol.28, pp.3172-3183. https://doi.org/10.1016/j.apt.....
 
13.
Hosseinzadeh K., Asadi A., Mogharrebi A.R., Khalesi J., Mousavisani S. and Ganji. D.D. (2019): Entropy generation analysis of (CH2OH)2 containing CNTs nanofluid flow under effect of MHD and thermal radiation.– Case Studies in Thermal Engineering, vol.14, pp.100-482, https://doi.org/10.1016/j.csit....
 
14.
Ibáñez G., López A., Pantoja J. and Moreira J. (2016): Entropy generation analysis of a nanofluid flow in MHD porous microchannel with hydrodynamic slip and thermal radiation.– Int. J. Heat Mass Trans., vol.100, pp.89-97, https://doi.org/10.1016/j.ijhe....
 
15.
Daniel Y.S., Aziz Z.A., Ismail Z. and Salah F. (2017): Entropy analysis in electrical magnetohydrodynamic (MHD) flow of nanofluid with effects of thermal radiation, viscous dissipation, and chemical reaction.– Theoretical & Applied Mechanics Letters, vol.7, pp.235-242, https://doi.org/10.1016/j.taml....
 
16.
Hussain S., Mehmood K., and Sagheer M. (2016): MHD mixed convection and entropy generation of water–alumina nanofluid flow in a double lid driven cavity with discrete heating.– Journal of Magnetism and Magnetic Materials, vol.419, pp.140-155, https://doi.org/10.1016/j.jmmm....
 
17.
Tayebi T. and Chamkha A.J. (2019): Entropy generation analysis during MHD natural convection flow of hybrid nanofluid in a square cavity containing a corrugated conducting block.– International Journal of Numerical Methods for Heat & Fluid Flow, vol.30, pp.1115-1136, https://doi.org/10.1108/HFF-04....
 
18.
Roja A., Gireesha B.J. and Prasannakumara B.C. (2020): MHD micropolar nanofluid flow through an inclined channel with entropy generation subjected to radiative heat flux, viscous dissipation and multiple slip effects.– Multidiscipline Modeling in Materials and Structures, vol.16, pp.1475-1496, https://doi.org/10.1108/MMMS-1....
 
19.
Javed T. and Siddiqui M.A. (2019): Mixed convection in micropolar nanofluid flow through entraed triangular enclosures and linear stability analysis considering magnetic effects and heat generation and absorption.– Canadian Journal of Physics, vol.97, pp.252-266, https://doi.org/10.1139/cjp-20....
 
20.
Javed T., Mehmood Z. and Siddiqui M.A. (2017): Mixed convection in a triangular cavity permeated with micropolar nanofluid-saturated porous medium under the impact of MHD.– Journal of the Brazilian Society of Mechanical Sciences and Engineering, vol.39, pp.3897-3909, https://doi.org/10.1007/s40430....
 
21.
Chand R., Yadav D., Bhattacharyya K. and Awasthi M.K. (2021): Thermal convection in a layer of micropolar nanofluid.– Chemical engineering, vol.16, p.2681. https://doi.org/10.1002/apj.26....
 
22.
Yusuf T.A., Kumar R.N., Prasannakumara B.C. and Adesanya S.O. (2021): Irreversibility analysis in micropolar fluid film along an incline porous substrate with slip effects.– International Communications in Heat and Mass Transfer, vol.126, pp.105-357, https://doi.org/10.1016/j.iche....
 
23.
Ramesh G.K., Rauf A., Shehzad S.A. and Abbasi F.M. (2021): Time-dependent squeezing flow of Casson- micropolar nanofluid with injection/suction and slip effects.– International Communications in Heat and Mass Transfer, vol.126 pp.104-470. https://doi.org/10.1016/j.iche....
 
24.
Ijazkhan M., Waqas H., Khan S.U., Imran M., Chu Y.M., Abbasi A. and Kadry S. (2021): Slip flow of micropolar nanofluid over a porous rotating disk with motile microorganisms, nonlinear thermal radiation and activation energy.– International Communications in Heat and Mass Transfer, vol.122, pp.105-161. https://doi.org/10.1016/j.iche....
 
25.
Eid M.R and Mabood F. (2021): Entropy analysis of a hydromagnetic micropolar dusty carbon NTs‑kerosene nanofluid with heat generation: Darcy–Forchheimer scheme.– Journal of Thermal Analysis and Calorimetry, vol.143, pp.2419-2436, https://doi.org/10.1007/s10973....
 
26.
Almakki M., Mondal H. and Sibanda P. (2021): Onset of unsteady MHD micropolar nanofluid flow with entropy generation.– International Journal of Ambient Energy, pp.1-14, https://doi.org/10.1080/014307....
 
27.
Zaib A., Khan U., Shah Z., Kumam P. and Thounthong P. (2019): Optimization of entropy generation in flow of micropolar mixed convective magnetite (Fe3O4) ferroparticle over a vertical plate.– Alexandria Engineering Journal, vol.58, No.4, pp.1461-1470, https://doi.org/10.1016/j.aej.....
 
28.
Nayak M.K., Mabood F., Khan W.A. and Makinde O.D. (2021) : Cattaneo–Christov double diffusion on micropolar magneto cross nanofluids with entropy generation.– Indian Journal of Physics, pp.1-16, https://doi.org/10.1007/s12648....
 
29.
Hsiao L. (2010): Heat and mass transfer for micropolar flow with radiation effect past a nonlinearly stretching sheet.– Heat Mass Transfer, vol. 46, pp.413-419, https://doi.org/10.1007/s00231....
 
30.
Yacob N.A. and Ishak A. (2011): MHD flow of a micropolar fluid towards a vertical permeable plate with prescribed surface heat flux.– Chemical Engineering Science Research Design, vol.89, pp.2291-2297, https://doi.org/10.1016/j.cher....
 
31.
Woods L.C. (2006) Thermodynamics of Fluid Systems.– Oxford University Press, Oxford.
 
32.
Alam M.S., Rahman M.M. and Sattar M.A. (2009): On the effectiveness of viscous dissipation and Joule heating on steady magnetohydrodynamic heat and mass transfer flow over an inclined radiate isothermal permeable surface in the presence of thermophoresis.– Communications in Nonlinear Science and Numerical Simulation, vol.14, pp.2132-2143, https://doi.org/10.1016/j.cnsn....
 
eISSN:2353-9003
ISSN:1734-4492
Journals System - logo
Scroll to top