Combined Effects of Helical Force and Rotation on Stationary Convection of a Binary Ferrofluid in a Porous Medium.
More details
Hide details
Institut de Mathématiques et de Sciences Physiques, Porto-Novo, Bénin
Online publication date: 2022-06-14
Publication date: 2022-06-01
International Journal of Applied Mechanics and Engineering 2022;27(2):158-176
This work studies the simultaneous effects of helical force, rotation and porosity on the appearance of stationary convection in a binary mixture of a ferrofluid and on the size of convection cells. We have determined the analytical expression of the Rayleigh number of the system as a function of the dimensionless parameters. The effect of each parameter on the system is studied. The consideration of the simultaneous effect of the basic characteristics made it possible to determine the evolution of the convection threshold in the ferrofluid and then the size of convection cells. The analyzes of the various results obtained allowed us to deduce whether the convection sets in quickly or with a delay when the various effects taken into account in the study are considered simultaneously.
Odenbach S. (2002): Ferrofluids: Magnetically Controllable Fluids and their Applications.– Springer, New York.
Berkovsky B. M., Medvdev V. F. and Krakov M.S. (1973): The Magnetic Fluids, Engineering Application.– Oxford University Press, Oxford.
Rosensweig R.E. (1985): Ferrohydrodynamics.– Cambridge University Press, Cambridge.
Mahmoudi M., Shokrgozar M. A., Simchi A., Imani M., Milani A.S., Stroeve P., Vali H., Hafeli U. O. and Bonakdar S. (2009): Multiphysics flow modeling and in vitro toxicity of iron oxide nanoparticles coated with poly(vinyl alcohol).– J. Phys. Chem. C, vol.113, pp.2322 -2331.
Neuringer J. L. and Rosensweig R.E. (1964): Ferrohydrodynamics.– Phys of Fluids, vol.7, No.12, pp.1927 -1937.
Finlayson B.A (1970): Convective instability of ferromagnetic fluids.– J. Fluid Mech., vol.40, pp.753 -767.
Alexiou C., Schmidt A., Klein R., Hulin P., Bergemann C. and Arnold W. (2002): Magnetic drug targeting: biodistribution and dependency on magnetic field strength.– J. Magn. Mater., vol.252, pp.363 -366.
Alexiou C., Arnold W., Klein R. J., Parak F. G., Hulin P., Bergemann C., Erhardt W., Wagenpfeil S. and Lubbe A. S. (2000): Locoregional cancer treatment with magnetic drug targeting.– Cancer Res., vol.60, pp.6641 -6648.
Popel A.S. and Johnson P. C. (2005): Microcirculation and Hemorheologie.– Ann. Rev. Fluid Mech., vol.37, pp.43 -69.
Baskurt O.K. and Meiselman H.J. (2003): Blood Rheology and Hemodynamics.– Semin. Thromb. Hemostatis, vol.29, pp.435 -450.
Bishop J.J., Popel A.S., Intaglietta M. and Johnson P. C. (2001): Rheological effects of red blood cell aggregation in the venous network: A review of recent studies.– Biorheology, vol.38, pp.263 -274.
Shivakumara I. S., Lee J., Nanjundappa C. E. and Ravisha M. (2011): Ferromagnetic convection in a rotating ferrofluid saturated porous layer.– Transp. Porous Med., vol.87, pp.251 -273.
Shivakumara, I. S., Lee, J., Ravisha M. and Gangadhara Reddy R. (2011): The onset of Brinkman ferroconvection using a thermal non-equilibrium model.– Int. J. Heat Mass Transf., vol.54, pp.2116 -2125.
Gotoh K. and Yamada M. (1982): Thermal convection in a horizontal layer of magnetic fluids.– J. Phys. Soc. Jpn., vol.51, pp.3042 -3048.
Gupta M. D. and Gupta A.S. (1979): Convective instability of a layer of a ferromagnetic fluid rotating about a vertical axis.– Int. J. Eng. Sci., vol.17, pp.271 -277.
Venkatasubramanian S. and Kaloni P.N. (1994): Effects of rotation on the thermo-convective instability of a horizontal layer of ferrofluids.– Int. J. Eng. Sci., vol.32, pp.237 -256.
Auernhammer G. K. and Brand H.R. (2000): Thermal convection in a rotating layer of a magnetic fluid.– Eur. Phys. J. B, vol.16, pp.157 -168.
Kaloni P. N. and Lou J. X. (2004): Weakly nonlinear instability of a ferromagnetic fluid rotating about a vertical axis.– J. Mag. Magn. Mat., vol.284, pp.54 -68.
Blennerhassett P. J., Lin F. and Stiles J. P. (1991): Heat transfer through strongly magnetized ferrofluids.– Proc. R. Soc. Lond., vol.433 A, pp.165 -177.
Ryskin A. and Pleiner H. (2004): Influence of a magnetic field on the Soret-effect dominated thermal convection in ferrofluids.– Phys. Rev. E, vol.69, Article Number 046301.
Laroze D., Martinez-Mardones J., Bragard J. and Vergas P. (2006): Convection in a rotating binary ferrofluid.– Physica A, vol.371, pp.46 -49.
Steenbeck M., Krause F. and Radler K. H. (1966): Zur Berechnung der mittleren Lorentz-Feldstarke u×B furein elektrisch leitendes Medium in turbulenter, durch Coriolis-Krafte beeinflusster Bewegung.– Z.Naturforsch, vol.21a, pp.369 -376.
Levina G.V., Moiseev S.S. and Rutkevich P.B (2000): Hydrodynamic Alpha-Effect in a Convective System, Advances in Fluid Mechanics, Nonlinear Instability, Chaos and Turbulence.– Eds. L. Debnath and D. N. Riahi, WIT. Press, Southampton.
Levina G.V., Burylov I.A., Firylyov A.V. and Shestakova L. V. (2004): Helical-Vortex Instability in a Convectively Unstable Fuid: Origin and Numerical Simulation.– ICMMA UBRAS, Perm.
Levina G.V. (2006): Parameterization of helical turbulence in numerical models of intense atmospheric vortices.– Doklady Earth Sciences, vol.411A, pp.1417 -1420.
Levina G.V. and Burylov I.A. (2006): Numerical simulation of helical-vortex effects in Rayleigh-Bénard convection.– Nonlinear Processes in Geophysics, vol.13, pp.205 -222.
Essoun M. and Chabi Orou J. B. (2010): Effects of rotation and helical force on the onset of Rayleigh-Bénard convection with free-free boundaries.– African Physical Review, vol.4, pp.65 -71.
Hounsou P., Monwanou A. V., Miwadinou C. H. and Chabi Orou J.B. (2020): Effect of helical force on the stationary convection in binary ferrofluid.– Indian J Phys., vol.94, No.10, Article number 15811590.
Hounsou P., Monwanou A. V., Miwadinou C. H. and Chabi Orou J.B. (2020): Effect of helical force on the stationary convection in a rotating ferrofluid.– Chinese Journal of Physics, vol.65, Article number 526537.
Hounsou P., Monwanou A.V., Miwadinou C. H. and Chabi Orou J.B. (2020): Stationary convection in a binary mixture of ferrofluids in a porous medium.– Fluid Dyn. Res., vol.52, Article number 035501.
Journals System - logo
Scroll to top