ORIGINAL PAPER
The Dynamic Characteristic and Hysteresis Effect of an Air Spring
,
 
 
 
 
More details
Hide details
1
Helmut-Schmidt-Universität: Institut für Maschinenelemente und Rechnergestützte Produktentwicklung Holstenhofweg 85, 22043 Hamburg, GERMANY
 
 
Online publication date: 2015-03-11
 
 
Publication date: 2015-02-01
 
 
International Journal of Applied Mechanics and Engineering 2015;20(1):127-145
 
KEYWORDS
ABSTRACT
In many applications of vibration technology, especially in chassis, air springs present a common alternative to steel spring concepts. A design-independent and therefore universal approach is presented to describe the dynamic characteristic of such springs. Differential and constitutive equations based on energy balances of the enclosed volume and the mountings are given to describe the nonlinear and dynamic characteristics. Therefore all parameters can be estimated directly from physical and geometrical properties, without parameter fitting. The numerically solved equations fit very well to measurements of a passenger car air spring. In a second step a simplification of this model leads to a pure mechanical equation. While in principle the same parameters are used, just an empirical correction of the effective heat transfer coefficient is needed to handle some simplification on this topic. Finally, a linearization of this equation leads to an analogous mechanical model that can be assembled from two common spring- and one dashpot elements in a specific arrangement. This transfer into ”mechanical language” enables a system description with a simple force-displacement law and a consideration of the nonobvious hysteresis and stiffness increase of an air spring from a mechanical point of view.
 
REFERENCES (18)
1.
Baehr H. (2008): Wärme- und Stoffübertragung. - Berlin: Springer Publishing Company.
 
2.
Chang F. (2008): Dynamic model of an air spring and integration into vehicle dynamics model. - Proceedings of the Institution of Mechanical Engineers-Part D: J. Automobile Engineering, vol.222, pp.1813-1825, London.
 
3.
DIN EN ISO 6946, Bauteile - Wärmedurchlasswiderstände und Wärmedurchgangskoeffizienten - Berechnungsverfahren, German Institute for Standardization, Beuth Publishing Company, Berlin (2008) Giek K. (1995): Technical Formulae. - Gieck Publishing Company, Germering.
 
4.
Kornhauser A.A. and Smith J.L. (1993): The effects of heat transfer on gas spring performance. - Journal of Energy Resources Technology, vol.115, pp.70-75, London.
 
5.
Kornhauser A.A. (1994): Dynamic modeling of gas springs. - Journal of Dynamic Systems - Measurement and Control, vol.116, pp.414-418, London.
 
6.
Lee J. and Kim K. (2007): Modeling of nonlinear complex stiffness of dual-chamber pneumatic spring for precision vibration isolations. - Journal of Sound and Vibration, vol.301, pp.909-926.
 
7.
Maßmann C. (1995): FE-Berechnung an Cord-Gummi Verbundwerkstoffen zur Ermittlung von Ermüdungsmechanismen in Luftfedern. - KGK Kautschuk Gummi Kunstoffe, vol.48, pp.423-429.
 
8.
TBVC. (2013): Internal documents, with kind permission of Trelleborg Vibracoustic GmbH & Co. KG, Hamburg.
 
9.
Pelz P. (2007): Beschreibung von pneumatischen Dämpfungssystemen mit dimensions-analytischen Methoden. - VDI Report 2003, pp.289-304.
 
10.
Pelz P. and Buttenbender J. (2004): The dynamic stiffness of an air-spring. - ISMA 2004 International Conference on Noise and Vibration Engineering, Leuven.
 
11.
Pelz P., Böcking J., Oberle R.V., Brook U. and Jaschke H. (2002): Simulation eines Luft - Feder - Dämpfers (LFD). - VDI Report 1701.
 
12.
Prasil L., Kracik V. and Frydrych D. (2005): Shape modelling of air bellows springs. - Proceedings of Algoritmy, pp.914-926, Podbanske.
 
13.
Prasil L., Kracik V. and Frydrych D. (2006): Contact problem in shape modelling of multi-bellows air springs. - Proceedings of the 6th WSEAS International Conference on Simulation, Modelling and Optimization, pp.487-491, Lissabon.
 
14.
Puff M. (2009): Entwicklung einer Prüfspezifikation zur Charakterisierung von Luftfedern. - Report Fluidsystemtechnik, Technische Universtität Darmstadt.
 
15.
Schützner P., Glasner E. and Povel R. (1994): Thermodynamische Analysen von Luftfedersystemen. - VDI-Report 1153, pp.113-135.
 
16.
Quaglia G. and Sorli M. (2001): Air suspension dimensionless analysis and design procedure. - Vehicle System Dynamics, vol.36, pp.443-475.
 
17.
Voß H. (1988): Die Luftfederung, eine regelbare Fahrzeugfederung. - Continental AG, Hannover.
 
18.
Welsch M. (2007): Der Einfluss der Rollbalgkonstruktion auf die Charakteristik einer Luftfeder. - Hamburg: University of Applied Science Hamburg (HAW).
 
eISSN:2353-9003
ISSN:1734-4492
Journals System - logo
Scroll to top