ORIGINAL PAPER
Soret and Dufour Effects on MHD Micropolar Fluid Flow Over a Linearly Stretching Sheet, Through a Non-Darcy Porous Medium
,
 
 
 
More details
Hide details
1
Department of Mathematics, K L E F, Vaddeswaram, Guntur, AP, India - 520522
 
 
Online publication date: 2018-06-04
 
 
Publication date: 2018-05-01
 
 
International Journal of Applied Mechanics and Engineering 2018;23(2):485-502
 
KEYWORDS
ABSTRACT
In this paper, we discuss the Soret and Dufour effects on an MHD micropolar fluid flow over a linearly stretching sheet, through a non-Darcy porous medium, where stretching velocity of the sheet varies linearly with distance from the origin, and, temperature and concentration vary non-linearly in the boundary layer region. By suitable similarity transformations, the governing boundary layer equations are transformed to ordinary differential equations. These equations are solved by numerical computations with bvp4c along with the shooting technique method. The effects of the magnetic parameter, Soret number and Dufour number on velocity profiles, microrotation profile, heat transfer, and concentration, skin-friction, Nusselt number and Sherwood number are computed, discussed and analysed numerically and presented through tables and graphs.
 
REFERENCES (28)
1.
Eringen A.C. (1960): Theory of micropolar fluids. J. Math. Mech., vol.6, pp.1–18.
 
2.
Sakiadis B.C. (1961): Boundary layer behavior on continuous solid surfaces: II. The boundary layer on continuous flat surface. AIChE J., vol.7, pp.221–225.
 
3.
Crane L.J. (1970): Flow past a stretching plane. Z. Angew. Math. Phys., vol.21, pp.645–647.
 
4.
Nield D.A. and Bejan A. (1999): Convection in Porous Media. 2nd ed. New York: Springer.
 
5.
Lukaszewicz G. (1999): Micropolar Fluids: Theory and Applications. Boston: Birkhäuser.
 
6.
Srinivasacharya D., Mendu Upendar (2013): Effect of double stratification on MHD free convection in a micropolar fluid. Journal of the Egyptian Mathematical Society, vol.21, pp.370–378.
 
7.
Ashwin Ramachandran, Bijaylakshmi Saikia, Krishnendu Sinha and Rama Govindarajan (2016): Effect of Prandtl number on the linear stability of compressible Couette flow. International Journal of Heat and Fluid Flow, pp.1–9.
 
8.
Asma Khalid, Ilyas Khan, Arshad Khan and Sharidan Shafie (2015): Conjugate transfer of heat and mass in unsteady flow of a micropolar fluid with wall couple stress. AIP ADVANCES 5, 127125.
 
9.
Sohail Nadeem, Sadaf Masood, Rashid Mehmood and Muhammad Adil Sadiq (2015): Optimal and Numerical Solutions for an MHD Micropolar Nanofluid between Rotating Horizontal Parallel Plates, PLOS ONE | DOI:10.1371/journal.pone.0124016.
 
10.
Das K. (2012): Slip effects on heat and mass transfer in MHD micropolar fluid flow over an inclined plate with thermal radiation and chemical reaction. Int. J. Numer. Meth. Fluids., vol.70, pp.96-113, DOI: 10.1002/fld.2683.
 
11.
Adhikari A. and Maiti A.K. (2014): MHD micropolar fluid flow towards a vertical surface in presence of heat. Journal of Imvi, vol.4, pp.1-25, DOI:11.7251/jimvi140101a.
 
12.
Habibi Matin M., Dehsara M. and Abbassi A. (2012): Mixed convection MHD flow of nanofluid over a non-linear stretching sheet with effects of viscous dissipation and variable magnetic field. ISSN 1392 - 1207. Mechanika, Vol.18, No.4, pp.415-423, http://dx.doi.org/10.5755/j01.....
 
13.
Chaudhary R.C. and Jha A.K. (2008): Effect of chemical reaction on MHD micropolar fluid flow past a vertical plate in slip-flow regime. Appl. Math. Mech. - Engl. Ed., vol.29, No.9, pp.1179-1194. DOI 10.1007/s10483-008-0907-x.
 
14.
Kashif Ali, Muhammad Farooq Iqbal, Zubair Akbar and Muhammad Ashraf (2014): Numerical simulation of unsteady water-based nanofluid flow and heat transfer between two orthogonally moving porous coaxial disks. Journal of Theoretical and Applied Mechanics, vol.52, No.4, pp.1033-1046.
 
15.
Syed Tauseef Mohyud-Din, Saeed Ullah Jan, Umar Khan and Naveed Ahmed (): MHD flow of radiative micropolar nanofluid in a porous channel: optimal and numerical solutions. Neural Comput. and Applic. DOI 10.1007/s00521-016-2493-3.
 
16.
El-Dabe N.T., Ghaly A.Y., Rizkallah R.R., Ewis K.M. and Al-Bareda A.S. (2015): Numerical solution of MHD flow of micropolar fluid with heat and mass transfer towards a stagnation point on a vertical plate. American Journal of Computational Mathematics, vol.5, pp.158-174. http://dx.doi.org/10.4236/ajcm....
 
17.
Srinivas Maripala and Kishan Naikoti (2016): MHD effects on micropolar nanofluid flow over a radiative stretching surface with thermal conductivity. Advances in Applied Science Research, vol.7, No.3, pp.73-82, ISSN: 0976-8610.
 
18.
Ali J. Chamkha, Mohamed R.A. and Sameh E. Ahmed (): Unsteady MHD natural convection from a heated vertical porous plate in a micropolar fluid with Joule heating, chemical reaction and radiation effects. Meccanica, DOI 10.1007/s11012-010-9321-0.
 
19.
Sandeep N., Sulochana C., Sugunamma V., Raju C.S.K. and Jayachandra Babu M. (2015): Unsteady boundary layer flow of thermophoretic MHD nanofluid past a stretching sheet with space and time dependent internal heat source/sink. Appl. Appl. Math. ISSN:1932-9466, vol.10, No.1, pp.312-327.
 
20.
Khedr M.E.M., Chamkha A.J. and Bayomi M. (2009): MHD flow of a micropolar fluid past a stretched permeable surface with heat generation or absorption. Nonlinear Analysis: Modelling and Control, vol.14, No.1, pp.27–40.
 
21.
Sandeep N. and Sulochana C. (2015): Dual solutions for unsteady mixed convection flow of MHD micropolar fluid over a stretching/shrinking sheet with non-uniform heat source/sink. Engineering Science and Technology, an International Journal, vol.18, 738e745.
 
22.
Satya Narayana P.V., Venkateswarlu B. and Venkataramana S. (2013): Effects of Hall current and radiation absorption on MHD micropolar fluid in a rotating system. Ain Shams Engineering Journal, vol.4, pp.843–854.
 
23.
Kelson N.A. and Desseaux A. (2001): Effects of surface conditions on flow of a micropolar fluid driven by a porous stretching sheet. International Journal of Engineering Science, vol.39, pp.1881-1897.
 
24.
Ramana Reddy G.V., Bhaskar Reddy N. and Chamkha A.J. (2016): MHD mixed convection oscillatory flow over a vertical surface in a porous medium with chemical reaction and thermal radiation. Journal of Applied Fluid Mechanics, vol.9, No.3, pp.1221-1229.
 
25.
Pal D. and Chatterjee S. (2015): Effects of radiation on Darcy-Forchheimer convective flow over a stretching sheet in a micropolar fluid with non-uniform heat source/sink. Journal of Applied Fluid Mechanics, vol.8, No.2, pp.207-212.
 
26.
Lakshmi R., Ramana Reddy G.V. and Jayarami Reddy K. (2015): Thermal radiation and variable viscosity on steady MHD free convective flow over a stretching sheet in Presence of heat source, dissipation and chemical Reaction. Global Journal of Pure and Applied Mathematics (GJPAM) ISSN 0973-1768, vol.11, No.2, pp. 246-281.(Scopus).
 
27.
Jhansi Rani K., Ramana Reddy G.V., Ramana Murthy Ch.V. and Ramana Murthy M.V. (2015): Heat and mass transfer effects on MHD free convection flow over an inclined plate embedded in a porous medium. Int. J. Chem. Sci., vol.13, No.4, pp.1998-2016.(Scopus).
 
28.
Ramana Reddy G.V., Bhaskar Reddy N. and Gorla R.S.R. (2016): Radiation and chemical reaction effects on MHD flow along a moving vertical porous plate. International Journal of Applied Mechanics and Engineering, vol.21, No.1, pp.157–168.
 
eISSN:2353-9003
ISSN:1734-4492
Journals System - logo
Scroll to top