ORIGINAL PAPER
Simulation of Thermal Transfer Attributes Under Varying Magnetic Fields Strain Influences and Viscous Energy Dissipation
,
 
,
 
 
 
More details
Hide details
1
Mathematics, Assam Don Bosco University, India
 
2
Mathematics, Gauhati University, India
 
3
Computer application, Assam Don Bosco University, India
 
These authors had equal contribution to this work
 
 
Submission date: 2025-02-28
 
 
Final revision date: 2025-05-09
 
 
Acceptance date: 2025-08-13
 
 
Online publication date: 2025-12-05
 
 
Publication date: 2025-12-05
 
 
Corresponding author
Bamdeb Dey   

Mathematics, Assam Don Bosco University, Assam Don Bosco University, 781017, Guwahati, India
 
 
International Journal of Applied Mechanics and Engineering 2025;30(4):38-51
 
KEYWORDS
TOPICS
ABSTRACT
This study investigates the mathematical modeling of impermeable fluid motion that conducts electricity, focusing on the effects of magnetism and chemical interactions on thermal energy, mass transfer, viscosity dissipation, and Soret-Dufour phenomena. These interactions are vital for advancements in technology, geophysical sciences, and biology, particularly in magnetohydrodynamics (MHD). The research describes the governing equations for momentum and energy conservation under varying magnetic fields and performs a numerical analysis of flow behavior influenced by viscous dissipation on a semi-infinite surface. The study employs a set of nonlinear coupled partial differential equations (PDEs) under specific boundary conditions, using a similarity transformation to convert these PDEs into simpler ordinary differential equations (ODEs). The resulting first-order simultaneous equations are solved using the boundary value solution (BVP-4c) technique in MATLAB. Results are illustrated through visual representations showing the impact of various parameters on velocity, temperature, and concentration contours, as well as variations in shear stress, Nusselt number, and Sherwood number coefficients. The primary aim is to explore the magnetic parameter (D) and stretching degree (n) concerning heat and mass transfer and chemical reaction characteristics such as Soret amount (Sr) and Dufour number. The findings reveal that changes in the magnetic field significantly affect heat and mass transport properties and enhance the efficiency of these processes in industrial and natural contexts. This study innovatively incorporates viscosity dissipation and chemical interactions into the MHD framework, thereby improving the predictive capability of fluid dynamics models in complex scenarios.
REFERENCES (48)
1.
Krishna M.V. (2022): Numerical investigation on steady natural convective flow past a perpendicular wavy surface with heat absorption/generation.– International Communications in Heat and Mass Transfer, vol.139, p.106517.
 
2.
Malleswari K., Nath J.M., Reddy M.V., Mala M.S. and Dey B. (2024): Thermal performance of Cattaneo-Christov heat flux in MHD radiative flow of Williamson nanofluid containing motile microorganisms and Arrhenius activation energy.– Journal of Computational and Theoretical Transport, vol.1-23.
 
3.
Kumaraswamy J., Kumar V., and Purushotham G. (2022): Evaluation of the microstructure and thermal properties of (ASTM A 494 M grade) nickel alloy hybrid metal matrix composites processed by sand mold casting.– International Journal of Ambient Energy, vol.43, No.1, pp.4899-4908.
 
4.
Yusuf A., Bhatti M.M. and Khalique C.M. (2024): Computational study of the thermophysical properties of graphene oxide/vacuum residue nanofluids for enhanced oil recovery.– Journal of Thermal Analysis and Calorimetry, vol.150, No.3, pp.1-13, DOI:10.1007/s10973-024-13921-y.
 
5.
Dey B. and Choudhury R. (2019): Slip effects on heat and mass transfer in MHD visco-elastic fluid flow through a porous channel.– Emerging Technologies in Data Mining and Information Security: Proceedings of IEMIS 2018., vol.1, pp.553-564.
 
6.
Choudhury R., Dey B. and Das B. (2018): Hydromagnetic oscillatory slip flow of a visco-elastic fluid through a porous channel.– Chemical Engineering Transactions, vol.71, pp.961-966.
 
7.
Vallejo J.P., Prado J.I. and Lugo L. (2022): Hybrid or mono nanofluids for convective heat transfer applications. A critical review of experimental research.– Applied Thermal Engineering, vol.203, Article 117926.
 
8.
Xu Q., Shen M., Xie K., Zhang H., Akkurt N., Wang J. and Liu L. (2022): Heat and mass transfer mechanism and control strategy of clean low carbon combustion technology in the novel-type coke oven flue with MILD combustion.– Fuel. vol.320, Article 124001.
 
9.
Dharmaiah G., Baby Rani C.H., Vedavathi N. and Balamurugan K.S. (2018): Heat and mass transfer on MHD fluid flow over a semi-infinite flat plate with radiation absorption, heat source and diffusion thermo effect.– Frontiers in Heat and Mass Transfer, vol.11, DOI:10.5098/hmt.11.6.
 
10.
Ene R.D., Pop N. and Badarau R. (2023): Heat and mass transfer analysis for the viscous fluid flow: dual approximate solutions.– Mathematics. vol.11, No.7, pp.1648.
 
11.
Salahuddin T., Khan M., Al-Mubaddel F.S., Alam M.M. and Ahmad I. (2021): A study of heat and mass transfer micropolar fluid flow near the stagnation regions of an object.– Case Studies in Thermal Engineering, vol.26, Article 101064.
 
12.
Majeed A.H., Mahmood R., Shahzad H., Pasha A.A., Raizah Z.A. and Hafeez M.B. (2023): Heat and mass transfer characteristics in MHD Casson fluid flow over a cylinder in a wavy channel: Higher-order FEM computations.– Case Studies in Thermal Engineering, vol.42, Article 102730.
 
13.
Loh A.K.W., Chen G.M. and Lim B.K. (2022): Viscous dissipation effect on forced convective transport of nanofluids in an asymmetrically heated parallel-plate microchannel.– Case Studies in Thermal Engineering, vol.35, Article 102056.
 
14.
Ajibade A.O., Umar A.M. and Kabir T.M. (2021): An analytical study on effects of viscous dissipation and suction/injection on a steady MHD natural convection Couette flow of heat generating/absorbing fluid.– Advances in Mechanical Engineering, vol.13, Article 16878140211015862.
 
15.
Masthanaiah Y., Tarakaramu N., Khan M.I., Rushikesava A., Moussa S.B., Fadhl B.M. and Eldin S.M. (2023): Impact of viscous dissipation and entropy generation on cold liquid via channel with porous medium by analytical analysis.– Case Studies in Thermal Engineering, vol.47, Article 103059.
 
16.
Alharbi K.A.M., Ullah A., Fatima N., Khan R., Sohail M., Khan S. and Ali F. (2022): Impact of viscous dissipation and Coriolis effects in heat and mass transfer analysis of the 3D non-Newtonian fluid flow.– Case Studies in Thermal Engineering, vol.37, Article 102289.
 
17.
Ajibade A.O. and Umar A.M. (2020): Effects of viscous dissipation and boundary wall thickness on steady natural convection Couette flow with variable viscosity and thermal conductivity.– International Journal of Thermofluids, vol.7, Article 100052.
 
18.
Raza Q., Qureshi M.Z.A., Alkarni S., Ali B., Zain A., Asogwa K.K. and Yook S.J. (2023): Significance of viscous dissipation, nanoparticles, and Joule heat on the dynamics of water: The case of two porous orthogonal disks.– Case Studies in Thermal Engineering, vol.45, Article 103008.
 
19.
Yang H., Hayat U., Shaiq S., Shahzad A., Abbas T., Naeem M. and Zahid M.A. (2023): Thermal inspection for viscous dissipation slip flow of hybrid nanofluid (TiO2–Al2O3/C2H6O2) using cylinder, platelet and blade shape features.– Scientific Reports., vol.13, No.1, Article 8316.
 
20.
Hasanuzzaman M., Akter S., Sharin S., Hossain M.M., Miyara A. and Hossain M.A. (2023): Viscous dissipation effect on unsteady magneto-convective heat-mass transport passing in a vertical porous plate with thermal radiation.– Heliyon, vol.9, No.3, DOI:10.1016/j.heliyon.2023.e14207.
 
21.
Swain B.K., Parida B.C., Kar S. and Senapati N. (2020): Viscous dissipation and Joule heating effect on MHD flow and heat transfer past a stretching sheet embedded in a porous medium.– Heliyon, vol.6, No.10, DOI:10.1016/j.heliyon.2020.e05338.
 
22.
Sedki A.M. (2022): Effect of thermal radiation and chemical reaction on MHD mixed convective heat and mass transfer in nanofluid flow due to nonlinear stretching surface through porous medium.– Results in Materials, vol.16, Article 100334.
 
23.
Samuel D.J. and Fayemi I.A. (2023): Impacts of variable viscosity and chemical reaction on Ohmic dissipative fluid flow in a porous medium over a stretching sheet with thermal radiation.– Heat Transfer, vol.52, No.7, pp.5022-5040, DOI:10.1002/htj.22915.
 
24.
Khalili N.N.W., Samson A.A., Aziz A.S.A. and Ali Z.M. (2017): Chemical reaction and radiation effects on MHD flow past an exponentially stretching sheet with heat sink.– Journal of Physics: Conference Series, vol.890, No.1, Article 012025.
 
25.
Lv Y.P., Shaheen N., Ramzan M., Mursaleen M., Nisar K.S. and Malik M.Y. (2021): Chemical reaction and thermal radiation impact on a nanofluid flow in a rotating channel with Hall current.– Scientific Reports., vol.11, No.1, Article 19747.
 
26.
Shah S.A.G.A., Hassan A., Karamti H., Alhushaybari A., Eldin S.M. and Galal A.M. (2023): Effect of thermal radiation on convective heat transfer in MHD boundary layer Carreau fluid with chemical reaction.– Scientific Reports, vol.13, No.1, Article 4117.
 
27.
Mirza A.H., Dey B. and Choudhury R. (2024): The detrimental effect of thermal exposure and thermophoresis on MHD flow with combined mass and heat transmission employing permeability.– International Journal of Applied Mechanics and Engineering., vol.29, No.1, pp.90-104.
 
28.
Mirza A H., Dey B. and Choudhury R. (2024): Synchronous heat and mass transmission in MHD Ohmic dissipative viscous fluid flow cavorted by an upright surface with chemical reaction.– Journal of Advanced Research in Fluid Mechanics and Thermal Sciences, vol.119, No.1, pp.54-66.
 
29.
Kumar M.A., Reddy Y.D., Goud B.S. and Rao V.S. (2021): Effects of Soret, Dufour, Hall current and rotation on MHD natural convective heat and mass transfer flow past an accelerated vertical plate through a porous medium.– International Journal of Thermofluids, vol.9, Article 100061.
 
30.
Siddique I., Nadeem M., Awrejcewicz J. and Pawłowski W. (2022): Soret and Dufour effects on unsteady MHD second-grade nanofluid flow across an exponentially stretching surface.– Scientific Reports., vol.12, No.1, Article 11811.
 
31.
Quader A. and Alam M.M. (2021): Soret and Dufour effects on unsteady free convection fluid flow in the presence of Hall current and heat flux.– Journal of Applied Mathematics and Physics, vol.9, No.7, pp.1611-1638.
 
32.
Balla C.S., Ramesh A., Kishan N. and Rashad A.M. (2021): Impact of Soret and Dufour on bioconvective flow of nanofluid in porous square cavity.– Heat Transfer, vol.50, No.5, pp.5123-5147.
 
33.
Bilal S., Asjad M.I., Haq S.U., Almusawa M.Y., Tag-El Din E.M. and Ali F. (2023): Significance of Dufour and Soret aspects on dynamics of water-based ternary hybrid nanofluid flow in a 3D computational domain.– Scientific Reports, vol.13, No.1, Article 4190.
 
34.
Rasool G., Shafiq A. and Baleanu D. (2020): Consequences of Soret-Dufour effects, thermal radiation, and binary chemical reaction on Darcy-Forchheimer flow of nanofluids.– Symmetry, vol.12, No.9, Article 1421.
 
35.
Abbas N., Shatanawi W. and Shatnawi T.A. (2023): Transportation of nanomaterial Maxwell fluid flow with thermal slip under the effect of Soret-Dufour and second-order slips: Nonlinear stretching.– Scientific Reports, vol.13, No.1, Article 2182.
 
36.
Gayathri M., Babu B.H. and Krishna M.V. (2025): Soret and Dofour effects on unsteady MHD convection flow over an infinite vertical porous plate.– Modern Physics Letters B, vol.39, No.9, p.2450449.
 
37.
Ameer Ahamad N., Veera Krishna M. and Chamkha A.J. (2020): Radiation-absorption and Dufour effects on magnetohydrodynamic rotating flow of a nanofluid over a semi-infinite vertical moving plate with a constant heat source.– Journal of Nanofluids, vol.9, No.3, pp.177-186.
 
38.
Parvin S., Isa S.S.P.M., Al-Duais F.S., Hussain S.M., Jamshed W., Safdar R. and Eid M.R. (2022): The flow, thermal and mass properties of Soret-Dufour model of magnetized Maxwell nanofluid flow over a shrinkage inclined surface.– PLoS One, vol.17, No.4, Article e0267148.
 
39.
Pishkar I., Ghasemi B., Raisi A. and Aminossadati S.M. (2021): Simulation of variable magnetic field effect on natural convection heat transfer of Fe3O4/graphite slurry based on experimental properties of slurries.– Journal of Applied Fluid Mechanics., vol.15, No.1, pp.1-14.
 
40.
Khan M.S., Shah R.A. and Khan A. (2019): Effect of variable magnetic field on the flow between two squeezing plates.– The European Physical Journal Plus, vol.134, No.5, Article 219.
 
41.
Sanni K.M., Hussain Q. and Asghar S. (2020): Heat transfer analysis for non-linear boundary driven flow over a curved stretching sheet with a variable magnetic field.– Frontiers in Physics., vol.8, Article 113.
 
42.
Alam M.K., Bibi K., Khan A., Fernandez-Gamiz U. and Noeiaghdam S. (2022): The effect of variable magnetic field on viscous fluid between 3-D rotatory vertical squeezing plates: A computational investigation.– Energies, vol.15, No.7, Article 2473.
 
43.
Dey B., Dukru D., Das T.K. and Nath J.M. (2024): Modelling and simulating the heat transference in Casson EMHD fluid motion exacerbated by a flat plate with radiant heat and Ohmic heating.– East European Journal of Physics, vol.2, pp.172-180, https://doi.org/10.26565/2312-....
 
44.
Dey B., Nath J.M., Das T.K. and Kalita D. (2022): Simulation of transmission of heat on viscous fluid flow with varying temperatures over a flat plate.– JP Journal of Heat and Mass Transfer, vol.30, pp.1-18.
 
45.
Jabeen K., Mushtaq M. and Akram R.M. (2019). A comparative study of MHD flow analysis in a porous medium by using differential transformation method and variational.– Iteration Method, vol.9, pp.2222-5498.
 
46.
Panton R.L. (2005): Incompressible Flow.– John Wiley& Sons, Inc., Hoboken, New Jersey.
 
47.
Bejan A. (2013). Convection heat transfer.– John Wiley & Sons, DOI:10.1002/9781118671627.
 
48.
Sherwood T.K., Pigford R.L. and Wilke C.R. (1975): Mass transfer.– McGraw-Hill, pp.677.
 
eISSN:2353-9003
ISSN:1734-4492
Journals System - logo
Scroll to top