Numerical study of a transient MHD flow across an oscillating vertical plate with thermal radiation and viscous dissipation
More details
Hide details
Department of Mathematics, R.M.K. Engineering College, Kavaraipettai, Tamil Nadu, INDIA
Department of Mathematics, Sri Venkateswara College of Engineering, Sriperumbudur, Tamil Nadu, INDIA
Online publication date: 2023-06-28
Publication date: 2023-06-28
International Journal of Applied Mechanics and Engineering 2023;28(2):77–89
The flow of an electrically conducting fluid across a vertically positioned oscillating semi-boundless plate with uniform mass diffusion and temperature is examined in this study in terms of the effects of thermal radiation and viscous dissipation. The dimensionless governing equations were solved using an effective and unconditionally stable implicit finite-difference approach known as the Crank-Nicolson method. Based on the numerical results, the impacts of various physical parameter values on concentration, temperature; velocity; Sherwood numbers, Nusselt numbers and skin-friction profiles are displayed graphically and their consequences thoroughly analyzed. We observed that when the magnetic field, radiation and phase angle parameters are increased, the velocity is reduced. This shows that plate oscillation, radiation and magnetic fields affect the flow pattern significantly.