Evaluation of YLT method to estimate the load carrying capacity of one-way patched reinforced concrete slab under concentrated load
More details
Hide details
SMARTCrete Research Group, Civil Engineering Department, Universitas Sebelas Maret, Jl. Ir. Sutami No. 36 Surakarta 57126, INDONESIA
Publication date: 2023-03-01
Corresponding author
Stefanus Adi Kristiawan
International Journal of Applied Mechanics and Engineering 2023;28(1):47-57
An unsaturated polyester resin (UPR) mortar was applied to repair the damage to the tension zone's one-way reinforced concrete (RC) slabs. The load carrying capacity of the patched RC slab is of interest to justify the effectiveness of the repair. The Yield Line Theory (YLT) may be used to estimate the load carrying capacity of patched RC slabs under concentrated load. The results of the YLT are compared with the experimental results to evaluate the validity of the YLT method. The results confirm that patching alters the yield line formation, mainly when the concentrated load is applied close to the patching zone. Subsequently, the YLT method provides a higher load carrying capacity estimation deviation for slabs with a loading point near the patching zone. On the other hand, the YLT method estimates load carrying capacity accurately when the loading point is away from the patching zone.
Mullard J. A. and Stewart M. G. (2011): Corrosion-induced cover cracking: New test data and predictive models.– ACI Struct. J., vol.108, No.1, pp.71-79. doi: 10.14359/51664204.
LiC. Q., Zheng J. J., Lawanwisut W. and Melchers R. E. (2007): Concrete delamination caused by steel reinforcement corrosion.– J. Mater. Civ. Eng., vol.19, No.7, pp.591-600. doi: 10.1061/(ASCE)0899-1561(2007)19:7(591).
McNamee R., Sjöström J. and Boström L. (2021): Reduction of fire spalling of concrete with small doses of polypropylene fibres.– Fire Mater., vol.45, No.7, pp.943-951. doi: 10.1002/fam.3005.
Logeswaran V. and Ramakrishna G. (2020): A study on compatibility of concrete repair materials.– J. Xi’an Univ. Archit. Technol., vol.12, No.6, pp.1123-1143.
KimH., Han D., Kim K. and Romero P. (2020): Performance assessment of repair material for deteriorated concrete slabs using chemically bonded cement.– Constr. Build. Mater., vol.237, p.117468. doi: 10.1016/j.conbuildmat.2019.117468.
Nunes V. A., Borges P.H.R. and Zanotti C. (2019): Mechanical compatibility and adhesion between alkali-activated repair mortars and Portland cement concrete substrate.– Constr. Build. Mater., vol.215, pp.569-581. doi: 10.1016/j.conbuildmat.2019.04.189.
Venkiteela G., Klein M., Najm H. and Balaguru P. N. (2017): Evaluation of the compatibility of repair materials for concrete structures.– Int. J. Concr. Struct. Mater., vol.11, No.3, pp.435-445. doi: 10.1007/s40069-017-0208-5.
Río O., Andrade C., Izquierdo D. and Alonso C. (2005): Behavior of patch-repaired concrete structural elements under increasing static loads to flexural failure.– J. Mater. Civ. Eng., vol.17, No.2, pp.168-177. doi: 10.1061/(asce)0899-1561(2005)17:2(168).
Koutas L. N. and Bournas D. A. (2017): Flexural strengthening of two-way rc slabs with textile-reinforced mortar: experimental investigation and design equations.– J. Compos. Constr., vol.21, No.1, p. 04016065. doi: 10.1061/(ASCE)CC.1943-5614.0000713.
Fernandes H., Lúcio V. and Ramos A. (2017): Strengthening of RC slabs with reinforced concrete overlay on the tensile face.– Eng. Struct., vol.132, pp.540-550. doi: 10.1016/j.engstruct.2016.10.011.
Al-Rousan R. (2019): Behavior of two-way slabs subjected to drop-weight.– Mag. Civ. Eng., vol.90, No.6, pp.62-71. doi: 10.18720/MCE.90.6.
Yin H., Teo W. and Shirai K. (2017): Experimental investigation on the behaviour of reinforced concrete slabs strengthened with ultra-high performance concrete.– Constr. Build. Mater., vol.155, pp.463-474. doi: 10.1016/j.conbuildmat.2017.08.077.
Zheng Y., Yu G. and Pan Y. (2012): Investigation of ultimate strengths of concrete bridge deck slabs reinforced with GFRP bars.– Constr. Build. Mater., vol.28, No.1, pp.482-492. doi: 10.1016/j.conbuildmat.2011.09.002.
Adi Kristiawan S. and Bekti Prakoso A. (2016): Flexural behaviour of patch-repair material made from unsaturated polyester resin (UPR)-Mortar.– Mater. Sci. Forum, vol.857, pp.426-430. doi: 10.4028/www.scientific.net/MSF.857.426.
Kristiawan S., SupriyadiA., Pradana D. R. and Azhim M. R. N. (2018): Flexural behaviour of one-way patched reinforced concrete (RC) slab under concentrated load.– Asian J. Civ. Eng., vol.19, No.2. doi: 10.1007/s42107-018-0014-7.
Kristiawan S. A. and Supriyadi A. (2020): Two-way patched RC slabs under concentrated loads.– Mag. Civ. Eng., vol.94, No.2, pp.108–119. doi: 10.18720/MCE.94.9.
Quintas V. (2003): Two main methods for yield line analysis of slabs.– J. Eng. Mech., vol.129, No.2, pp.223–231. doi: 10.1061/(ASCE)0733-9399(2003)129:2(223).
Deaton J. B. (2005): A Finite Element Approach to Reinforced Concrete Slab Design.– MSc Thesis, Georgia Institute of Technology.
Alasam M. A. A. (2006): Yield Line Method Applied to Slabs with Different Supports. MSc Thesis, University of Khartoum.
Salehian H. and Barros J. A. O. (2017): Prediction of the load carrying capacity of elevated steel fibre reinforced concrete slabs.– Compos. Struct., vol.170, pp.169-191. doi: 10.1016/j.compstruct.2017.03.002.
Bauer D. and Redwood R. G. (1987): Numerical yield line analysis.– Comput. Struct., vol.26, No.4, pp.587–596. doi: 10.1016/0045-7949(87)90007-1.
Burgess I. (2017): Yield-line plasticity and tensile membrane action in lightly-reinforced rectangular concrete slabs.– Eng. Struct., vol.138, pp.195-214. doi: 10.1016/j.engstruct.2017.01.072.
Taouche-Kheloui F., Djellad Z. A., Tahar K. A. and Bélaidi O. (2015): Behavior of concrete slabs reinforced with composite patch under centric punching load.– Procedia Eng., vol.114, pp.255-262. doi: 10.1016/j.proeng.2015.08.066.
Journals System - logo
Scroll to top