ORIGINAL PAPER
Effects of a magnetic field on circulation in an advanced inclined isothermal sectional surface with mass and heat transfer
 
More details
Hide details
1
MATHEMATICS, PANIMALAR ENGINEERING COLLEGE, India
 
2
MATHEMATICS, R M K ENGINEERING COLLEGE
 
3
APPLIED MATHEMATICS, SRI VENKATESWARA COLLEGE OF ENGINEERING
 
These authors had equal contribution to this work
 
 
Submission date: 2024-07-05
 
 
Final revision date: 2024-11-03
 
 
Acceptance date: 2025-02-07
 
 
Online publication date: 2025-06-13
 
 
Publication date: 2025-06-13
 
 
Corresponding author
SUNDAR RAJ MARIADOSS   

MATHEMATICS, PANIMALAR ENGINEERING COLLEGE, PANIMALAR ENGINEERING COLLEGE POONAMALLEE CHENNAI, 600123, CHENNAI, India
 
 
International Journal of Applied Mechanics and Engineering 2025;30(2):161-176
 
KEYWORDS
TOPICS
ABSTRACT
The purpose of this study is to investigate the influence of an external magnetic field on heat and mass distribution across a moving isothermal sectional surface. The temperature is elevated to ( ) of the plate. The proximity intensity is increased to the concentration of the plate ( ). The study addresses a range of physical factors, including time, velocity profile, temperature, and intensity, as well as thermal Grashof number (Tg), mass Grashof number (Tm), Schmidt number (Sc), and Prandtl number (Pr). The dimensionless equations are addressed using both the Laplace-transform technique and the finite difference method, which is used to analyze the energy, momentum, and concentration equations. The results are illustrated through graphical representations, and the tabular manner to showcase various flow parameters. The results indicate that the velocity increases proportionally with changes in (Tg) and (Tm). As the angle (α) rises, the velocity shows a clear incremental pattern when the magnetic field strength decreases. Local skin friction correlates positively with the angle (α), Sc, and Pr, and negatively with Gr, Gc, and time. The study includes a Nusselt number table for various parameters corresponding to an increase in the Prandtl number, as well as the Sherwood number for different components as the Schmidt number escalates. This work helps us learn more about the complicated interactions between magnetic fields and fluid movement, which is useful for many engineering and science projects.
REFERENCES (58)
1.
Raptis A., Tzivanidis G.J. and Peridikis C.P. (1981): Hydromagnetic free convection flow past an accelerated vertical infinite plate with variable suction and heat flux.– Heat Mass Transf., vol.8, pp.137-143.
 
2.
Raptis A. and Singh A.K. (1983): MHD free convection flow past an accelerated vertical plate.– Int. Commun. Heat Mass Transf., vol.10, No.4, pp.313-21.
 
3.
Jha B.K. and Prasad R. (1990): Free convection and mass transfer effects on the flow past an accelerated vertical plate with heat sources.– Mech. Res. Commun. vol.17, pp.143-148.
 
4.
Ganesan P. and Ekambavanan K. (1995): Numerical solution of transient natural convection flow along an inclined plate with variable surface temperature and variable mass diffusion.– J. Appl. Mech. vol.216, pp.91-96.
 
5.
Muthukumaraswamy R. and Ganesan P. (1998): Unsteady flow past an impulsively started vertical plate with heat and mass transfer.– Heat Mass Transf., vol.34, No.2-3, pp.187-93.
 
6.
Kamel M.H. (2001): Unsteady MHD convection through porous medium with combined heat and mass transfer with heat source/sink.– Energy Convers. Manag., vol.42., No.4, pp.393-405.
 
7.
Chen C.H. (2004): Transfer of mass and heat of natural convection through a porous in a MHD flow in an inclined surface with variable concentration and temperature.– Acta Mech., vol.172, pp.219-235.
 
8.
Mbeledogu I.U., Amakiri A.R. and Ogulu A. (2007): Unsteady MHD free convective flow of a compressible fluid past a moving vertical plate in the presence of radiative heat transfer.– Int. J. Heat Mass Transf., vol.50, No.9-10, pp.1668-1674.
 
9.
Suneetha S., Reddy N.B. and Prasad V.R. (2008): Thermal radiation effects on MHD free convection flow past an impulsively started vertical plate with variable surface temperature and concentration.– J. Nav. Archit., vol.5, No.2, pp.57-70.
 
10.
Muthucumaraswamy R., Sundar Raj M., Subramanian V.S.A. (2010): Heat transfer effects on accelerated vertical plate with variables temperature and mass flux.– Acta Tech. Corvin., Bull Eng., vol.3, pp.31-34.
 
11.
Eldabe N.T.M., Elbashbeshy E.M.A, Hasanin W.S.A. and Elsaid. E.M. (2011): Unsteady motion of MHD viscous incompressible fluid with heat and mass transfer through porous medium near a moving vertical plate.– Int. J. Energy Technol., vol.3, pp.1-11.
 
12.
Kumar A.V. and Varma S.V. (2011): Radiation effects on MHD flow past an impulsively started exponentially accelerated vertical plate with variable temperature in the presence of heat generation.– Int. J. Eng. Sci. Technol., vol.3, No.4, pp.2897-2909.
 
13.
Shivaiah S. and Rao A.J. (2012): Chemical reaction effect on an unsteady MHD free convection flow past a vertical porous plate in the presence of suction or injection.– Theor. Appl. Mech. vol.39. No.2, pp.185-208.
 
14.
Pattnaik J.R, Dash G.C. and Singh S. (2012): Radiation and mass transfer effects on MHD free convection flow through porous medium past an exponentially accelerated vertical plate with variable temperature.– Annals Facul. Eng., Hunedoara., vol.10, No.3, pp.175.
 
15.
Mishra S.R., Dash G.C. and Acharya M. (2013): Mass and heat transfer effect on MHD flow of a visco-elastic fluid through porous medium with oscillatory suction and heat source.– Int. J. Heat Mass Transf., vol.57, No.2, pp.433-438.
 
16.
Alam M.S., Ali M. and Hossain M.D. (2013): Heat and mass transfer in MHD free convection flow over an inclined plate with Hall current.– Int. J. Eng. Sci., vol.2, pp.81-88.
 
17.
Muthucumarswamy R. and Jeyanthi L. (2014): Hall effects on MHD flow past an infinite vertical plate in the presence of rotating fluid of variable temperature and uniform mass diffusion with first order chemical reaction.– Int. J. Appl. Eng., vol.9. No.24, pp.26259-26271.
 
18.
Barik R.N. and Dash G.C. (2014): Thermal radiation effect on an unsteady magneto hydrodynamic flow past inclined porous heated plate in the presence of chemical reaction and viscous dissipation.– Appl. Math. Comput., vol.226, pp.423-434.
 
19.
Das S., Jana R.N. and Makinde O.D. (2015): Magneto hydrodynamic mixed convective slip flow over an inclined porous plate with viscous dissipation and Joule heating.– Alex. Eng. J., vol.54, No.2, pp.251-261.
 
20.
Raju M.C., Varma S.V. and Seshaiah B. (2015): Heat transfer effects on a viscous dissipative fluid flow past a vertical plate in the presence of induced magnetic field.– Ain Shams Eng. J., vol.6, No.1, pp.333-339.
 
21.
Suriyakumar P. and Devi S.A. (2015): Effects of suction and internal heat generation on hydromagnetic mixed convective nanofluid flow over an inclined stretching plate.– Eur. J. Adv. Eng. Technol.,vol.2, pp.51-58.
 
22.
Sheri S.R., Suram A.K. and Modulgua P. (2016): Heat and mass transfer effects on MHD natural convection flow past an infinite inclined plate with ramped temperature.– J. Korean Math. Soc., vol.20, No.4, pp.355-374.
 
23.
Muthucumaraswamy R. and Sivakumar P. (2016): MHD flow past a parabolic flow past an infinite isothermal vertical plate in the presence of thermal radiation and chemical reaction.– Int. J. Appl. Mech. Eng., vol.21, No.1, pp.95-105.
 
24.
Pattnaik J.R., Dash G.C. and Singh S. (2017): Radiation and mass transfer effects on MHD flow through porous medium past an exponentially accelerated inclined plate with variable temperature.– Ain Shams Eng. J., vol.8, No.1, pp.67-75.
 
25.
Kumar G. (2017): Hall effect on MHD flow past over moving inclined plate with mass transfer.– Int. J. Adv. Eng. Technol., vol.1, No.1, pp.7-15.
 
26.
Thumma T., Bég O.A. and Sheri S.R. (2017): Finite element computation of magnetohydrodynamicnanofluid convection from an oscillating inclined plate with radiative flux, heat source and variable temperature effects.– Proc. Inst. Mech. Eng. N: J. Nanomater. Nanoeng. Nanosyst., vol.231, No.4, pp.179-194.
 
27.
Rajput U.S. and Kumar G. (2017): Radiation effect on unsteady MHD flow through porous medium past an exponentially accelerated inclined plate with variable temperature and mass diffusion in the presence of Hall current.– Arya Bhatta J. Math. Inform., vol.9, No.1, pp.718-728.
 
28.
Rajput U.S. and Kumar G. (2018): Rotation and radiation effects on MHD flow past an inclined plate with variable wall temperature and mass diffusion in the presence of hall current.– Appl. Appl. Math., vol.13, No.1, pp.31.
 
29.
Endalew M.F. and Nayak A. (2019): Thermal radiation and inclined magnetic field effects on MHD flow past a linearly accelerated inclined plate in a porous medium with variable temperature.– Heat Transf. Asian Res., vol.48, No.1, pp.42-61.
 
30.
Prakash J., Siva E.P., Tripathi D., Kuharat S. and Bég O.A. (2019): Peristaltic pumping of magnetic nanofluids with thermal radiation and temperature-dependent viscosity effects: modelling a solar magneto-biomimetic nano pump.– Renew. Energ., vol.133, pp.1308-1326.
 
31.
Prusty L.K. and Senapati M. (2020): Unsteady MHD heat and mass transfer flow of a radiating fluid past an accelerated inclined porous plate in presence of hall current with chemical reaction.– Int. J. Eng. Res. Appl., vol.10, No.7, pp.49-66.
 
32.
Sandhya A., Ramana Reddy G.V. and Deekshitulu V.S.R.G. (2020): Heat and mass transfer effects on MHD flow past an inclined porous plate in the presence of chemical reaction.– Int. J. Appl. Mech. Eng., vol.25, No.3, pp.86-102.
 
33.
Joshi N., Pandey A.K., Upreti H. and Kumar M. (2020): Mixed convection flow of magnetic hybrid nanofluid over a bidirectional porous surface with internal heat generation and a higher-order chemical reaction.– Heat Transfer, vol.50, No.6, https://doi.org/10.1002/htj.22....
 
34.
Fatunmbi O.E. and Salawu S.O. (2021): Analysis of hydromagnetic micropolar nanofluid flow past a nonlinear stretchable sheet and entropy generation with Navier slips.– International Journal of Modelling and Simulation, vol.42, No.3, pp.359-369, https://doi.org/10.1080/022862....
 
35.
Zafar A.A., Awrejcewicz J., Kudra G., Shah N.A. and Yook S.J. (2021): Magneto-free-convection flow of a rate type fluid over an inclined plate with heat and mass flux.– Case Stud. Therm. Eng., vol.27, p.101249.
 
36.
Dadheech P.K., Agrawal P., Sharma A. and Dadheech A. (2021): Entropy analysis for radiative inclined MHD slip flow with heat source in porous medium for two different fluids.– Case Stud. Therm. Eng., vol.28, p.101491.
 
37.
Kaushik P. and Mishra U. (2022): Numerical solution of free stream MHD flow with the effect of velocity slip condition from an inclined porous plate.– J. Math. Comput. Sci., vol.12, pp.1-14.
 
38.
Nagarajan G., Sundar Raj M. and Muthucumaraswamy R. (2022): The influence of thermal expansion on flow past an inclined accelerated sectional plate with persistent mass diffusion.– Int. J. Appl. Mech. Eng., vol.27, No.4, pp.105-116.
 
39.
Vishalakshi A.B., Mahabaleshwar U.S. and Sarris I.E. (2022): An MHD fluid flow over a porous stretching/shrinking sheet with slips and mass transpiration.– Micromachines, vol.13, No.1, p.116.
 
40.
Nayak M.K., Agbaje T.M., Mondal S., Sibanda P. and Makanda G. (2022): Entropy minimized MHD microrotations of cross nanomaterials with cubic autocatalytic chemical reaction.– Heat Transf., vol.51, No.1, pp.490-533.
 
41.
Bharathi V., Prakash J., Vijayaragavan R., Balaji R. and Pushparaj V. (2023): Rotation, electromagnetic field, and variable thermal conductivity effects on free convection flow past an eternity vertical porous plate.– Heat Transf., vol.52, No.3, pp.2593-2617.
 
42.
Sundar Raj M., Nagarajan G., Murugan V.P. and Muthucumaraswamy R. (2023): Impacts of chemical reactions on inclined isothermal vertical plate.– International Journal of Applied Mechanics and Engineering, vol.28, No.2, pp.64-76, doi: 10.59441/ijame/168439.
 
43.
Weirong Xiu, Salawu S.O., Oludoun O.Y., Ogunlaran O.M. and Disu A.B. (2023): Combined impact of Lorentz force, micro-rotation, and thermo-migration of particles: Dynamics of micropolar fluids experiencing nonlinear thermal radiation and activation energy.– Journal of Magnetis and Magnetic Materials, vol.569, No.1, https://doi.org/10.1016/j.jmmm....
 
44.
Upreti H., Pandey A.K., Gupta T. and Upadhyay S. (2023): Exploring the nanoparticle’s shape effect on boundary layer flow of hybrid nanofluid over a thin needle with quadratic Boussinesq approximation: Legendre wavelet approach.– Journal of Thermal Analysis and Calorimetry, vol.148, No.22, DOI:10.1007/s10973-023-12502-9.
 
45.
Salawu S.O. (2023): Evaluation of thermo-diffusion and diffusion-thermo phenomenon on the reactive micropolar fluid motion over an extending device.– International Journal of Modelling and Simulation, vol.5, pp.75-87, DOI:10.1080/02286203.2023.2188514.
 
46.
Upreti H., Pandey A.K., Kumar M. and Makinde O.D. (2023): Darcy–Forchheimer flow of CNTs-H2O nanofluid over a porous stretchable surface with Xue model.– International Journal of Modern Physics B, vol.37, No.2 https://doi.org/10.1142/S02179....
 
47.
Fatunmbi E.O., Adeosun A.T. and Salawu S.O. (2023): Dynamics of melting heat transfer of a micropolar nano fluid over an electromagnetic actuator with irregular thickness and non-uniform heat source.– International Journal of Applied and Computational Mathematics, vol.9, No.3, DOI:10.1007/s40819-023-01526-2.
 
48.
Upreti H., Uddin Z., Pandey A.K. and Joshi N. (2023): Sensitivity analysis for Sisko nanofluid flow through stretching surface using response surface methodology.– Research Square, preprint, DOI:10.21203/rs.3.rs-3343783/v1.
 
49.
Alao S., Salawu S.O., Oderinu R.A., Oyewumi A.A. and Akinola E.I. (2024): Investigation of thermal radiation and viscous heating effects on the hydromagnetic reacting micropolar fluid species flowing past a stretchy plate in permeable media.– International Journal of Thermofluids, vol.22, DOI:10.1016/j.ijft.2024.100600.
 
50.
Nagarajan G., Sundar Raj M., Venkatesan J., Jeyanthi L. and Muthucumaraswamy R. (2024): Effects of chemical reactions in the presence of temperature variations and isothermal mass diffusion over an inclined plate.– Int. J. of Applied Mechanics and Engineering, vol.29, No.2, pp.104-117, DOI: 10.59441/ijame/187050.
 
51.
Bartwal P., Upreti H., Pandey A.K., Joshi N. and Joshi B.P. (2024): Application of modified Fourier's law in a fuzzy environment to explore the tangent hyperbolic fluid flow over a non-flat stretched sheet using the LWCM approach.– Int. Com. in Heat and Mass Transfer, vol.153, No.11, DOI:10.1016/j.icheatmasstransfer.2024.107332.
 
52.
Bartwal P., Pandey A.K. and Upret H. (2024): Impact of anisotropic slip on magnetized tangent hyperbolic fluid flow over a rotating disk: A Legendre wavelet collocation method.– International Communications in Heat and Mass Transfer, vol.159, Part B, https://doi.org/10.1016/j.iche....
 
53.
Bartwal P., Upreti H. and Pandey A.K.(2024): Entropy and melting heat transfer assessment of tangent hyperbolic fluid flowing over a rotating disk.– Journal of Thermal Analysis and Calorimetry, vol.149, No.11, pp.1-16, DOI:10.1007/s10973-024-13150-3.
 
54.
Prakash J., Tripathi D., Tiwari A.K. and Pandey A.K. (2024): Melting heat transfer and irreversibility analysis in Darcy-Forchheimer flow of Casson fluid modulated by EMHD over cone and wedge surfaces.– Thermal Science and Engineering Progress, vol.52, No.5, DOI:10.1016/j.tsep.2024.102680.
 
55.
Gupta T., Pandey A.K. and Kumar M. (2024): Shape factor and temperature-dependent viscosity analysis for the unsteady flow of magnetic Al2O3–TiO2/C2H6O2–H2O using Legendre wavelet technique.– Pramana, J. Phys. vol.98, No.73, https://doi.org/10.1007/s12043....
 
56.
Gupta T., Pandey A.K. and Kumar M. (2024): Numerical study for temperature-dependent viscosity based unsteady flow of GP-MoS2/C2H6O2-H2O over a porous stretching sheet.– Numerical Heat Transfer, Part A: Applications, vol.85, No.2, pp.1-22, https://doi.org/10.1080/104077....
 
57.
Gupta T., Pandey A.K. and Kumar M. (2024): Effect of Thompson and Troian slip on CNT-Fe3O4/kerosene oil hybrid nanofluid flow over an exponential stretching sheet with Reynolds viscosity model.– Modern Physics Letters B, vol.38, No.2, https://doi.org/10.1142/S02179....
 
58.
Nagarajan G., Sundar Raj M., Venkatesan J., Venkata Mohan Reddy P. and Muthucumaraswamy R. (2024): Chemical process effects on sloped surface with changing mass and consistent temperature.– Chemical Industry and Chemical Engineering, DOI: https://doi.org/10.2298/CICEQ2....
 
eISSN:2353-9003
ISSN:1734-4492
Journals System - logo
Scroll to top