Effect of the Inner Diameter and Reynolds Number on the Recirculation Zone in Annular Jet Flow
More details
Hide details
Department of Mechanical Engineering, Faculty of Science and Technology University of Mascara, Algeria
Online publication date: 2022-06-14
Publication date: 2022-06-01
International Journal of Applied Mechanics and Engineering 2022;27(2):87-97
In this paper, we focus on the effect of the inner diameter and Reynolds number on the recirculation zone in an annular jet flow with numerical simulation by resolving the Reynolds-averaged Navier-Stokes equations with the first closed model of turbulence k-epsilon. The annular jet plays an essential role in stabilizing the flame in the burner which is used in many industrial applications. The annular jet is characterized by the inner and outer diameter. In this study, three different inner diameters are adopted with constant width of the annular jet. We adopted also three different values of the Reynolds number show the effect of the Reynolds number on the recirculation zone. The simulation is realized by a CFD code which uses the finite element method. The results obtained from this study are in good agreement with the experimental data. Two recirculation zones are shown; a large recirculation zone at the outlet of the flow and a small recirculation zone just near the injection generated by the annular flow and the inner diameter Di; it is observed that the size of the recirculation zone increases when the inner diameter increases and the length of the recirculation zone depends only on the inner diameter. This recirculation zone is also affected by the Reynolds number with a very low variation of the recirculation length.
Vanierschot M. and Van den Bulck E. (2008): Influence of swirl on the initial merging zone of a turbulent annular jet.– Physics of Fluids, vol.20, 105104, doi:10.1063/1.2992191.
Martins F.J.W.A., Kirchmann J., Kronenburg A. and Beyrau F. (2020): Experimental investigation of axisymmetric, turbulent, annular jets discharged through the nozzle of the SPP1980 Spray Synburner under isothermal and reacting conditions.– Experimental Thermal and Fluid Science, vol.114, 110052, doi:10.1016/j.expthermflusci.2020.110052.
Del Taglia C., Blum L., Gass J., Ventikos Y. and Poulikakos. D. (2004): Hysteresis in flow patterns in annular swirling jets.– ASME.J. Fluids Eng., vol.126, No.3, pp.375 -384.
Danlos A., Lalizel G. and Patte-Rouland B. (2013): Experimental characterization of the initial zone of an annular jet with a very large diameter ratio.– Experiments in Fluids, p.32, 10.1007/s00348-012-1418-x.
Sheen HJ., Chen WJ. and Jeng SY. (1996): Recirculation zones of unconfined and confined annular swirling jets.– AIAA Journal, vol.34, No.3, doi:10.2514/3.13106.
Vanierschot M. and Van den Bulck E. (2007): Hysteresis in flow patterns in annular swirling jets.– Experimental Thermal and Fluid Science, vol.31, pp.513 -524.
Patte-Rouland B., Lalize G., Morea J. and Rouland E. (2001): Flow analysis of an annular jet by particle image velocimetry and proper orthogonal de composition.– Meas. Sci. Technol, vol.12, pp.1404-1412.
Moore E.M., Shambaugh R.L. and Papavassiliou D.V. (2004): Analysis of isothermal annular jets: comparison of computational fluid dynamics and experimental data.– Journal of Applied Polymer Science, vol.94, pp.909-922.
Ko N.W.M., Lau K.K. and Lam K.M. (1998): Dynamics of interaction modes in excited annular jets.– Experimental Thermal and Fluid Science, vol.17, Issue 4, pp.319-338.
Boguslawski A. and Wawrzak K. (2020): Absolute instability of an annular jet: local stability analysis.– Meccanica, vol.55, pp.2179-2198.
Zhang Y. and Vanierschot M. (2021): Proper orthogonal decomposition analysis of coherent motions in a turbulent annular jet.– Appl. Math. Mech.Engl. Ed, vol.42, pp.1297-1310, doi:10.1007/s10483-021-2764-8.
Percin M., Vanierschot M. and Oudheusden, B.W.van (2017): Analysis of the pressure fields in a swirling annular jet flow.– Experiments in Fluids, vol.58, p.13, doi:10.1007/s00348-017-2446-3.
Chattopadhyay H. (2004): Numerical investigations of heat transfer from impinging annular jet.– International Journal of Heat and Mass Transfer, vol.47, No.14-16, pp.3197 -3201.
Yang H.Q., Kim T., Lu T.J. and Ichimiya K. (2010): Flow structure, wall pressure and heat transfer characteristics of impinging annular jet with/without steady swirling.– International Journal of Heat and Mass Transfer, vol.53, No.19 -20, pp.4092 -4100.
Philippov M.V., Chokhar I A, Terekhov V.V. and Terekhov V.I. (2020): Flow evolution in the near field of a turbulent annular jet.– Journal of Physics: Conference Series, vol.1565, Article Number 012070, doi:10.1088/1742-6596/1565/1/012070.
Ryzhenkov V.O. and Mullyadzhanov R.I. (2020): Symmetry breaking in annular jets with different blockage ratio.– Journal of Physics: Conference Series, vol.1677, Article Number 012028, p.6, doi:10.1088/1742-6596/1677/1/012028.
Terekhov V.I., Kalinina S.V. and Sharov K.A. (2016): An experimental investigation of flow structure and heat transfer in an impinging annular jet.– International Communications in Heat and Mass Transfer, vol.79, pp.89-97.
Wawrzak K., Boguslawski A., Tyliszczak A. and Saczek M. (2019): LES Study of global instability in annular jets.– International Journal of Heat and Fluid Flow, vol.79, 108460, doi:10.1016/j.ijheatfluidflow.2019.108460.
Kurup A.L., Ölçmen S.M. and Anwar A. (2015): Experimental study of co-annular jet subjected to transverse disturbances.– Experimental Thermal and Fluid Science, vol.66, pp.53-62.
Lalizel G. (2004): Experimental characterization of the aerodynamics of an annular jet with a very large diameter ratio. Fluid dynamics.– Phd thesis, University of Rouen.
Journals System - logo
Scroll to top