A Numerical Approach to Slip Flow of a Micropolar Fluid above A Flat Permeable Contracting Surface
More details
Hide details
Department of Mathematics, Government Arts College for Men, Affiliated to University of Madras, Chennai, India
Department of Mathematics, Dr. Ambedkar Govt. Arts College, Affiliated to University of Madras, Chennai, India
Department of Mathematics, JECRC University, Jaipur-, 302033, India
Department of Mechanical Engineering, National Institute of Technology, Arunachal Pradesh-791112, India
Online publication date: 2021-06-22
Publication date: 2021-06-01
International Journal of Applied Mechanics and Engineering 2021;26(2):173-185
A plain linear penetrable contracting sheet with slip over a micro-polar liquid with a stagnation-point flow is analyzed. Through similarity mapping, the mathematical modeling statements are transformed as ODE’s and numerical results are found by shooting techniques. The varying impacts of physical quantities on the momentum, micro-rotation, and temperature were demonstrated through graphs. The computed measures including shear and couple stress with distinct measures of factors involved in this proposed problem are presented through a table.
Miklavčič M. and Wang C.Y. (2006): Viscous flow due to a shrinking sheet.– Q. Appl. Math., vol.64, pp.283-290.
Wang C. Y. (2008): Stagnation flow towards a shrinking sheet.– Int. J. Nonlinear Mech., vol.43, pp.377-382.
Nadeem S., Hussain A., Malik M. Y. and Hayat T. (2009): Series solutions for the stagnation flow of a second-grade fluid over a shrinking sheet.– Appl. Math. Mech., vol.30, pp.1255-1262.
Bachok N., Ishak A, and Pop I. (2010): Melting heat transfer in boundary layer stagnation-point flow towards a stretching/shrinking sheet.– Phy. Lett. A, vol.374, pp.4075-4079.
Fan T., Xu H, and Pop I. (2010): Unsteady stagnation flow and heat transfer towards a shrinking sheet.– Int. Comm. Heat Mass Tran., vol.37, pp.1440-1446.
Rosali H., Ishak A. and Pop I. (2011): Stagnation point flow and heat transfer over a stretching/shrinking sheet in a porous medium.– Int. Comm. Heat and Mass Tran., vol.38, pp.1029-1032.
Bhattacharyya K. and Vajravelu K. (2010): Stagnation-point flow and heat transfer over an exponentially shrinking sheet.– Comm. Nonlinear Sci. Numer. Simul., vol.17, pp.2728-2734.
Bachok N., Ishak A. and Pop I. (2013): Boundary layer stagnation-point flow toward a stretching/shrinking sheet in a nanofluid.– ASME J Heat Tran., vol.135, p.5. https://doi.org/10.1115/1.4023....
Eringen A. C. (1966): Theory of micropolar fluids.– J. Math. Mech., vol.16, pp.1-18.
Kumari M. and Nath G. (1984): Unsteady incompressible boundary layer flow of a micropolar fluid at a stagnation point.– Int. J Eng. Sci., vol.22, pp.755-768.
Ziaul Haque Md., Mahmud Alam Md., Ferdows M. and Postelnicu A.: Micropolar fluid behaviors on steady MHD free convection and mass transfer flow with constant heat and mass fluxes, Joule heating, and viscous dissipation.– Journal of Kind Saud University Engineering Sciences, vol.24, pp.71-84.
Uddin Z. and Kumar M. (2013): Hall and ion-slip effect on MHD boundary layer flow of a micropolar fluid past a wedge.– Scientia Iranica B, vol.20, No.3, pp.467-476.
Borrelli A., Giantesio G. and Patria M. C. (2015): An exact solution for the 3D MHD stagnation point flow of a micropolar fluid.– Commun Nonlinear Science and Numerical Simulation, vol.20, pp.121-135.
Siva Reddy Sheri and Shamshuddin MD. (2015): Heat and mass transfer on the MHD flow of micropolar fluid in the presence of viscous dissipation and chemical reaction.– Procedia Engineering, vol.127, pp.885-892.
Rahman M. M., Rahman M. A., Samad M. A. and Alam M. S. (2009): Heat transfer in a micropolar fluid along with a non-linear stretching sheet with temperature-dependent viscosity and variable surface temperature.– Int. J Thermophys., vol.30, pp.1649-1670.
Ishak A., Lok Y. Y. and Pop I. (2010): Stagnation-point flow over a shrinking sheet in a micropolar fluid.– Chem. Eng. Comm., vol.197, pp.1417-1427.
Yacob N. A., Ishak A. and Pop I. (2011): Melting heat transfer in boundary layer stagnation point flow towards a stretching/shrinking in a micropolar fluid.– Computers & Fluids, vol.47, pp.16-21.
Bhattacharyya K., Mukhopadhyay S., Layek G. C. and Pop I. (2012): Effects of thermal radiation on micropolar fluid flow and heat transfer over a porous shrinking sheet.– Int. Journal of Heat and Mass Transfer, vol.55, pp.2945-2952.
Hussain M., Ashraf M., Nadeem S. and Khan M. (2013): Radiation effects on the thermal boundary layer flow of a micropolar fluid towards a permeable stretching sheet.– Journal of The Franklin Institute, vol.350, pp.194-210.
Khilap Singh, Pandey A. K., and Manoj Kumar. (2019): Analytical approach to stagnation point flow and heat transfer of a micropolar fluid via a permeable shrinking with slip and convective boundary conditions.– Heat Transfer Research, vol.50, No.8, pp.739-756.
Subhas Abel M., Datti P. S. and Mahesha N. (2009): Flow and heat transfer in a power-law fluid over a stretching sheet with variable thermal conductivity and non-uniform heat source.– Int. Journal of Heat and Mass Transfer., vol.52, pp.2902-2913.
Mahmoud M. A. A. and Waheed S. E. (2012): MHD flow and heat transfer of a micropolar fluid over a stretching surface with heat generation(absorption) and slip velocity.– Journal of the Egyptian Mathematical Society, vol.20, pp.20-27.
Mabood F., Ibrahim S.M., Rashidi M. M., Shadloo M. S. and Lorenzini G. (2019): Nonuniform heat source/sink and Soret effects on MHD non-Darcian convective flow past a stretching sheet in a micropolar fluid with radiation.– Int. Journal of Heat and Mass Transfer, vol.92, pp.674-682.
Muthamilselvan M., Periyadurai K. and Doh D. H. (2017): Effect of uniform and nonuniform heat source on natural convection flow of micropolar fluid.– Int. J of Heat and Mass Tran., vol.115, pp.19-34.
Mishra S. R., Hoque M. M., Mohanty B. and Anika N. N. (2019): Heat transfer effect on MHD flow of a micropolar fluid through porous medium with uniform heat source and radiation.– Nonlinear Engineering, vol.8, pp.65-73.
Journals System - logo
Scroll to top