
 

Int. J. of Applied Mechanics and Engineering, 2025, vol.30, No.3, pp.128-141 
DOI: 10.59441/ijame/207141 

 
STUDY ON THE INFLUENCE OF SLIDING BEARING STIFFNESS 
ON THE DYNAMIC RESPONSE OF HYDRO-GENERATOR SHAFT 

 
Y. Ri*, S. Ryang, and G. Ryong 

Umjong, Institute of Mechanic, KOREA (NORTH) 
E-mail: ryj1989@star-co.net.kp 

 
The dynamic modeling of the main shaft system of a hydro turbine generator is carried out by considering the 

combined effects of unbalanced mass force, magnetic pull force, hydrodynamic force and oil film force of the 
sliding bearing, its critical rotational speed is obtained, the effect of the sliding bearing stiffness at each journal on 
the critical rotational speed of the whole shaft system is evaluated, and the method is proposed to improve the 
stability of the hydro turbine generator by changing it, and the validity is demonstrated by the field test results.  
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1. Introduction 
 
 The determination of the critical rotational speed of a hydro-turbine generator under the combined 
action of mechanical, magnetic and hydraulic forces and the correct evaluation of the influence of these factors 
are important issues in hydro-turbine generator stability studies. 
 In [1-2], the nonlinear coupled vibration characteristics of a four-DOF system are investigated by numerical 
methods under the influence of mechanical forces, such as bearing looseness, misalignment, static unbalance, and 
oil-bearing blockage, in a vertical rotor-shaft-support system that models the rotor system of a hydro-turbine 
generator. In [3-9], the influence of various factors on the vibration response of the system in a four-DOF hydro 
turbine generator shaft system is analyzed by considering the unbalanced magnetic pull force and the unbalance 
force in the hydro-dynamic system composed of the generator rotor, hydro-turbine, shaft and support bearings. 
 Also some analyses were carried out on the natural vibration characteristics of the main system of the 
hydro-turbine generator unit with complex rotor bearing system and proposed a lot of methods to calculate the 
critical speed of the dynamic shaft system [10-14]. 
 But there are still no papers that studied effect of sliding bearing stiffness on the critical rotational 
speed of the hydro turbine generator shaft system. 
 Therefore in this paper we investigate the dynamic modeling of the hydraulic turbine generator spindle 
system and the method of finding the critical rotational speed by considering the combined action of mass 
unbalance force, magnetic pull force, hydrodynamic force and oil film force of the sliding bearing, and shows 
the method to achieve the vibration stability of the system by evaluating the effect of sliding bearing stiffness 
on the critical rotational speed of the system. 
 
2. Dynamic modeling of the hydro-turbine generator spindle system 
 
 The hydro-turbine generator spindle system considered in this paper consists of a generator rotor, a 
turbine, and three sliding bearings supporting the shaft and the shaft connecting them (Fig.1). 
Take the coordinate system as shown in Fig.1 and neglect the torsional or axial vibration of the hydro-turbine 
generator shaft system and consider only the bending vibration.  
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( , , , , )io i 1 2 3 4 5  denote the center of the upper bearing 1, generator rotor 2, lower bearing 3, turbine bearing 

4, and turbine 5, respectively, and , , , , ,
1 1 3 3 4 4x y x y x yf f f f f f  are the oil film components of the bearings, 

,
2 2x yp p  is the component of the magnetic tensile force, ,

5 5x yp p  is the component of the hydrodynamic 

excitation force, , ,1 3 4m m m  is the mass of each slide bearing, ,2 5m m  is the mass of the rotor and the turbine. 
 The free vibration equation of the system is expressed as [1, 2]: 
 
  [ ]{ } [ ]{ } [ ]{ }r r r r r r r rM X G C X K X 0      . (2.1) 
 
In Eq.(2.1), rX  is the degree of freedom vector, is the velocity vector, and is the velocity vector. 
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The rotational angles around the x  and y  axes of the system are: 
 

  
  

a) Fundamental structure. b) Dynamic model. 
 

Fig.1. Mechanical model of the hydro-turbine generator shaft system. 
 

rM  is the mass matrix of the system, r is the angular velocity of the shaft system, rG  is the gyroscopic 

matrix, rC is the damping matrix, rK  is the stiffness matrix, and the detailed form is as follows:  
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where, ,  di piJ J  are the axial and polar moments of inertia of mass i , respectively, and xK  is the following 

matrices: 
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 Where E  is the Young’s modulus of the shaft material, iI  is the axial moment of inertia of the cross 

section of shaft i , and il  is the length of shaft link iE . Under assumption of elastic support, the sliding bearing 
support condition can be expressed through the generalized force. 
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 Transferring this generalized force to the left-hand side of Eq.(2.1) and synthesizing it into the 
corresponding elements of the stiffness matrix and damping matrix, it is superimposed on the rows and 
columns corresponding to the bearing positions in the original stiffness matrix or damping matrix. 
The unbalanced magnetic pull force caused by various causes, such as non-concentric rotor-stator coupling, 
rotor or stator pole imperfections, and shaft initial bending, is expressed by the following equation, considering 
that the pole pair number p of the hydro-turbine generator is generally greater than 3 [3-5]. 
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Where, 0  is the magnetic induction coefficient in the air, jI  is the field current of the generator rotor, jK  is 

the air gap fundamental magnetic intensity coefficient, rR  is the radius of the generator rotor, rL  is the length 

of the rotor, and the expansion coefficient n  is: 
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0  is the average air-gap of the generator rotor when the generator rotation axis is not eccentric,   is the 

rotation angle of the generator rotor, i.e. cos ,  sin ,  2 2 2
2

2 2 0

x y e

e e
     


 is the rotor relative eccentricity, 

,2 2x y  are the displacements of the generator rotor, and 2e  is the initial static eccentricity of the generator. 
 It can be seen from Eq.(2.5) that the unbalanced magnetic pull force has a strong nonlinearity with 
respect to the rotor displacement. 
 On the other hand, if the turbine is not symmetric or a periodic change occurs in the seal clearance of 
the machine’s main shaft, the water pressure fluctuation within the seal will occur, which will result in an 
unbalanced force of water [4-7]. 
 This force is: 
 
  ,

5 5x w y wp k x p k y  . (2.6) 

 
 The water balance coefficient is denoted by wk , where is the water imbalance coefficient [8, 9]. 
Linearizing the unbalanced magnetic traction force represented by Eq.(2.4) with the oil film force of the sliding 
bearing, we can add to the stiffness matrix rK , and the unbalanced force of water in the turbine represented 
by Eq.(2.6) is also added to the stiffness matrix. 
 
3. Simulation calculation of the critical rotational speed and the effect of stiffness 
 
3.1. Calculation method of critical rotational speed 
 
 From Eq.(2.1), the free vibration equation of the system is [8]: 
 
  [ ]{ } [ ]{ } [ ]{ }r r r r r r r rM x G C x K x 0      . (3.1) 
 
 Since the mass matrix, damping matrix and stiffness matrix in Eq.(3.1) are not all diagonal, the general 
method of computing the eigenvalues by solving the characteristic equation in the form of harmonic functions 
and finding the roots is not applicable. 
 We use the state variable method to solve this problem. 

 Introducing the state variables [ , ]Tr rV x x  , Eq.(3.1) can be written as the following equation [8, 9]: 
 

  
[( ) ]

rr
1

r r r r r r r r

xx
V

x M G C x K x

        
         


 

. (3.2) 

 
 In matrix form  
  
  V A V  . (3.3) 
 
Here 
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 The critical rotational speed of the system can be found by solving the singular value problem of matrix 
A  in Eq.(3.3). 
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Setting the solution vector to  
 

  teV = A . (3.5) 
 

 We have / tdV dt V e     and Eq.(3.5) is expressed in the form A V=λV . 
 For example, in MATLAB, an eigenvalue solution of the form of Eq.(3.5) can be easily obtained for 
the singular value of the matrix A  using the     V, D = eig A  command. The computed eigenvectors are 

contained in the main diagonal matrix D  and the eigenvectors in the square matrix A . 
 Denoting the i-th eigenvalue of the system by i iu i    , the desired eigenvalue is a complex 

conjugate, and its imaginary part i  denotes the rotational angular frequency of the rotor at the specified 
rotational speed. 
 Using the imaginary part of the singular value, the critical rotational speed of the rotor can be found, 
and when the rotational speed of the rotor is equal to each other, i  is the rotational speed of the system i . 

 The real part iu  of the singular value is used to judge whether the system is stable or not, if all iu  is negative, 
the system is stable, and if the real part of at least one singular value is zero or positive, the system is unstable. 
 The procedure to calculate the critical rotational speed of the lateral vibration of the system is as follows. 
First, the initial speed of the rotor and the calculation time step are set, and the geometric and physical 
parameters of each element of the system are input. 
 

 
 

Fig.2. Flow chart for calculating the critical rotational speed. 
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 Then, the element mass matrix and stiffness matrix are obtained and the element stiffness matrix of 
the sliding bearing is input. 
 Then, the mass and stiffness matrices of the whole system are obtained by superposition of the above 
element stiffness and mass matrices, and the singular values of A  are obtained by using the MATLAB 
eigenvalue solver according to Eq.(3.3). 
 Plot the variation of the imaginary part of the singular value with the variation of the rotational speed 
and find the critical rotational speed of the lateral vibration of the system. 
 When the initial parameters do not meet the accuracy requirements in design and calculation, the initial 
parameters and calculation step time are reset to obtain the satisfied results. 
 The flowchart for calculating the critical rotational speed of the lateral vibration of the hydraulic 
turbine generator shaft system is shown in Fig.2. 
 
3.2. Effect of sliding bearing stiffness on critical rotational speed 
 
 According to the method described above, the critical rotational speed of the hydraulic turbine 
generator shaft system is obtained and the effect of the sliding bearing stiffness on the critical rotational speed 
of the system is analyzed. 
 The system parameters are as follows: 
 Axis 1 in Fig.1 is considered as a hollow shaft with a constant cross-section, i.e., inner diameter is 

 .  dI 0 8 m , outer diameter is  .  dO 1 26 m , and length is  .  L 1 6 m . 

 Shafts 2, 3 and 4 are one axis, with inner diameter is  .  dI 1 45 m  and outer diameter is  .  dO 1 9 m . 

 Where  .  ,   .  1 2L 4 5 m L 6 2 m   and  .  3L 2 2 m . 

The elastic modulus of the shaft is    E 206 GPa , the density of the spindle is  / 37850 kg m , the rotational 
speed of the spindle is    n 75 rpm , the maximum rotational speed is    n 145 rpm , the mass of the generator 

rotor is  .   6
1m 1 2 10 kg  , the mass inertia is .   7 24 5 10 kg m  , the aberration mass is  .   5

2m 2 8 10 kg   

and the mass inertia is .   6 22 4 10 kg m   [1]. 
 The critical rotational speed variation of the system is analyzed by varying the stiffness of the upper 
slide bearing, the lower slide bearing and the water wheel slide bearing. 
 For the simultaneous variation of the three sliding bearing stiffness, the coefficient of linearized 

unbalanced magnetic traction is fixed at . /81 36 10 N m , and the sliding bearing is equivalent to an elastic 
system with stiffness and damping. 
 In Fig.3, the first and third Eigen modes of the system are shown. 
 
Tab.1. Effect of three sliding bearing stiffnesses on the critical rotational speed (units: r/min). 
 

Degree 
stiffness N/m 

1th 2th 3th 

1×108 296.17 630.57 821.65 

1.2×108 305.73 659.23 832.21 

3.2×108 353.50 878.98 926.75 

5.2×108 372.61 917.19 1 022.29 

7.2×108 382.16 936.30 1 089.17 

9.2×108 383.47 939.73 1 136.94 

11.2×108 383.85 945.85 1 165.60 
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 From Tab.1, it can be seen that when the bearing stiffness is increased from   /81 10 N m  to 

.   /811 2 10 N m , the first, second and third critical rotational speeds are increased by 29%, 49.9% and 60%, 
respectively, with the increase of bearing stiffness, the three critical rotational speeds of the system increase 
gradually and the increments are all relatively large. 
 Overall, the effect of the sliding bearing stiffness on the primary rotational speed of the system is 
relatively small and the effect on the tertiary critical rotational speed is relatively large. 
 It should be noted that the first and second critical rotational speeds nearly do not increase after the 

stiffness of . /83 2 10 N m . 
 

 
 

Fig.3. Natural vibration modes of a hydro-turbine generator. 
 

 When only the stiffness of the upper slide bearing changes. 
 To analyze the effect of one slide bearing stiffness on the critical rotational speed of the system, the 

stiffness of the upper slide bearing is varied and the two slide bearing stiffness are fixed at . / .8k 7 2 10 N m   
Table 2 shows the effect of upper slide bearing stiffness on the critical rotational speed. 
 
Tab.2. Effect of top slide bearing stiffness on critical rotational speed (in units: r/min) 
 

Degree 
stiffness N/m 

1th 2th 3th 

1.2×108 382.16 936.30 1 089.17 

3.2×108 382.85 936.84 1 089.53 

5.2×108 383.21 937.28 1 090.17 

7.2×108 383.95 938.14 1 090.83 

9.2×108 384.54 938.91 1 091.37 

11.2×108 385.29 939.47 1 092.12 

 

 As can be seen from Tab. 2, increasing the upper slide bearing stiffness from . /8k 1 2 10 N m   to 

. /8k 11 2 10 N m   does not change the critical rotational speed of the system. 
This indicates that the stiffness value of the upper slide bearing has little effect on the critical rotational speed 
of the system in the range considered above.  

 When only the stiffness of the lower slide bearing changes. 
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 Table 4 shows the influence of the lower slide bearing stiffness variation on the critical rotational speed 

when the upper and the aberration slide bearing stiffness is fixed at . /8k 7 2 10 N m  . 

 When the lower slide bearing stiffness is increased from . /8k 1 2 10 N m   to . /8k 11 2 10 N m  , 
the critical rotational speeds increase considerably, with the second critical rotational speed increasing by about 
36% and the third critical rotational speed increasing by about 20%. 

 When the lower slide bearing stiffness is greater than . /8k 7 2 10 N m  , the first and second critical 
rotational speeds remain constant with the increase of bearing stiffness. 
 
Tab.3. Influence of lower slide bearing stiffness on critical rotational speed (unit: r/min). 
 

Degree 
stiffness N/m 

1th 2th 3th 

1.2×108 343.94 687.89 955.41 

3.2×108 371.34 878.98 984.07 

5.2×108 372.61 926.75 1 041.40 

7.2×108 376.51 936.30 1 089.17 

9.2×108 380.31 938.48 1 127.38 

11.2×108 382.16 940.21 1 146.49 
 

The first and second critical rotational speeds are almost constant for stiffness values above . /85 2 10 N m . 
 When only the turbine sliding bearing stiffness changes. 

 When the upper and lower slide bearings stiffness are fixed at . /8k 7 2 10 N m  , Tab.4 shows the effect 
of the aberration slide bearing stiffness on the critical rotational speed: the first critical rotational speed increases 
by about 14.3%, the second by about 12.6%, and the third critical rotational speed increases by about 10.4%. 
 
Tab.4. Critical rotational speed (in units: r/min) as a function of the rotor sliding bearing stiffness. 
 

Degree 
stiffness N/m 

1th 2th 3th 

1.2×108 334.39 831.21 1 003.18 

3.2×108 363.05 907.64 1 041.4 

5.2×108 372.61 926.75 1 070.06 

7.2×108 382.16 936.30 1 089.17 

9.2×108 384.38 938.71 1 098.72 

11.2×108 386.31 941.61 1 108.28 
 
 The critical rotational speeds of the first, second and third orders are constant after the stiffness is 

. /83 2 10 N m . 
 A comprehensive analysis of the effect of a single slide bearing on the critical rotational speed of the 
system shows that, in general, the critical rotational speed of the system increases with the increase of the 
sliding bearing stiffness; however, there exists a limit at which the first and second critical rotational speeds 
become almost constant when the increase of the sliding bearing stiffness reaches a certain extent. 
 Therefore, an overall increase in the sliding bearing stiffness does not always lead to an increase in the 
critical rotational speed of the system, and should be chosen reasonably according to the system characteristics, 
which depend on the system characteristics and can be determined based on the above analysis. 
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4. Field tests and results analysis 
 
 The results of the field test analysis are illustrated to demonstrate the validity of the results for the 
simulation study of the mathematical model. 
 The hydro-turbine generator (rated power 10 MW, speed 410 r/min, maximum head 390 m) of a hydro-
electric power plant in our country was in a state of water operation where the vibration level of each sliding bearing 
of the generator exceeded the allowable limit (100 μm) and caused severe vibration and was difficult to operate. 
 Based on the standard design dimensions of the hydro-turbine generator, the first critical rotational 
speed is 16.5 Hz and the second critical rotational speed is 39.6 Hz, calculated by the aforementioned method. 
The vibration level of each slide bearing measured during operation is shown in Tab.5. 
 
Tab.5. Vibration level of vibration measurement points (in units: μm). 
 

Measurement position Upper slide bearing Lower slide bearing Turbine slide bearing 

Level 150 210 138 

 
 The real waveform and spectral diagram at the measurement points are shown in Fig.4 and the axial 
diagram in Fig.5. 
 

 
 

a) Vibration speed signal waveform of upper slide bearing. 
 

 
 

b) Power spectrum of upper slide bearing vibration speed signal (Fig.4.a). 
 

Fig.4. Vibration velocity signals and spectrogram at the measurement points. 
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c) Vibration speed signal waveform of lower slide bearing. 
 

 
 

d) Power spectrum of lower slide bearing(Fig.4.c) 
 

 
 

e) Vibration speed signal waveform of the water wheel slide bearing. 
 

 
 

f) Spectrum of the water wheel sliding bearing. 
 

Fig.4 cont. Vibration velocity signals and spectrogram at the measurement points. 



Y. Ri et al.  139 

 
 

Fig.5. Axial diagram of the generator-turbine shaft system. 
 

 From the vibration levels, spectral diagrams and axial diagrams of the measuring positions, it can be 
seen that the rotation axis has strong bending vibration and the mode of bending vibration coincides with the 
first natural mode of the axial system, and the first resonance occurs. 
 Inspection of the assembly state of the turbo-generator showed that the assembly dimensions and radial 
clearances of the upper, lower and aberration sliding bearings did not reach the design level, which reduced 
the stiffness, thus reducing the system's first critical rotational speed.  
 Based on the results calculated in the previous section, the bearings that have a decisive influence on 
the critical speed of the system are the lower and the water wheel bearings, so based on the design-level 
dimensions of the turbine generator assembly, the assembly dimensions of the lower and water wheel sliding 
bearings and the oil film clearance are adjusted to the design value, and the turbine generator is reassembled 
to drive the turbine generator, the vibration is reduced to the steady level (50 µm), the shaft diagram of the 
generator-turbine shaft system shown in Fig.5 is not shown, and the primary resonance is eliminated. 
 This is because in this case the first and second critical rotational frequencies are far enough away 
from the turbine rotational frequency of 6.83 Hz, which shows the validity of the aforementioned critical 
rotational frequency calculation method. 
 
5. Conclusions 
 
 A dynamic model representing a system of nonlinear differential equations considering various 
coupling actions for a hydro-turbine spindle system was established, the effect of the sliding bearing stiffness 
on the critical rotational speed of the system was studied, and field tests demonstrated the validity of the 
theoretical findings. 
 When the stiffness of the three sliding bearings supporting the system is increased simultaneously, the 
critical rotational speed of the system is generally increased, but the degree depends on the order of the critical 
rotational speed. 
 Regarding the effect of the stiffness of individual bearings on the critical rotational speed, the upper 
slide bearing has little effect on the critical rotational speed of the system, but the increase of the stiffness of 
the lower bearing and turbine bearing increases the critical rotational speed relatively significantly. 
 However, when the sliding bearing stiffness is large to some extent, there is a limit at which the first 
and second critical rotational speeds no longer increase, and it is difficult to prevent resonance by increasing 
the critical rotational speed of the system by increasing the bearing stiffness. 
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 Therefore, in order to achieve vibration stability by increasing the critical rotational speed of the 
system sufficiently, it is necessary to increase the stiffness of the support bearings and also improve other 
factors such as the mass of the system, the sectional properties of the shaft and damping. 
 This has been verified through a field application example. 
 
Nomenclature 
 
 rC  – damping matrix,  

 E  – Young’s modulus of the shaft material,  

 rG  – gyroscopic matrix,  

 iI  – axial moment of inertia of the cross section of shaft i ,  

 jI  – field current of the generator rotor,  

 ,  di piJ J  – axial and polar moments of inertia of mass i  

 jK  – air gap fundamental magnetic intensity coefficient, 

 rK  – stiffness matrix 

 il  – length of shaft link iE  

 rL  – length of the rotor,  

 rM  – mass matrix of the system,  

 rR  – radius of the generator rotor,  

 ,2 2x y  – displacements of the generator rotor 

 0  – average air-gap of the generator rotor 

 n  – expansion coefficient  

 0  – magnetic induction coefficient in the air,  

 r  – angular velocity of the shaft system,  
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