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Anti-plane problems in elastic, viscoelastic, functionally graded material, and thermoelastic medium have been 
discussed by researchers in the past. The anti-plane problem in the context of Green-Naghdi (Type III) thermoelasticity 
has been unexplored. In the present work, a crack in a strip of Green Nagdhi (Type III) thermoelastic medium is discussed 
under anti-plane shear conditions. The lower boundary of the strip is fixed and it is displaced along the upper boundary. 
The crack surface is assumed to be traction-free. The expressions of displacement, temperature, and shear stress are 
obtained. The values of these expressions are then obtained using MATLAB software and the values are then plotted 
against horizontal distance. The effect of the width of the strip on the components is shown through graphical results. It is 
found that the width of the strip affects all the physical quantities. The shearing stress along the width of the strip is less 
oscillatory as compared to the shearing stress along the length of the strip. 
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1. Introduction 

 
 In the initial years, thermoelasticity theories were introduced by researchers [1-3]. Green and Nagdhi 
[4-6] explored the theory of thermoelasticity by introducing type I, type II, and type III theories. In these 
theories proposed by Green and Naghdi entropy equality was considered instead of entropy inequality taken 
in previous theories. Different researchers have explored the Green-Naghdi theory of thermoelasticity in the 
past namely Quintanilla [7, 8], Bargmann et al. [9], Aouadi et al. [10], Kumar et al. [11], Othman and Eraki 
[12], Ezzat et al. [13], Aouadi et al. [14], Conti et al. [15], Abouelregal [16], Sarkar and Atwa [17], Atwa [18], 
Abbas [19], Ailawalia et al. [20]. A lot of work has been done in the field of thermoelastic theories. It may not 
be possible to acknowledge all the work but a few prominent problems discussed in the past have been 
acknowledged by the authors. Pany et al. [21] studied wave propagation in orthogonally supported periodic 
curved panels. Abbas and Othman [22] investigated propagation of plane waves in a thermo-microstretch 
elastic solid half-space. Abbas [23] studied a problem on thermoelastic interactions in a functional graded 
material due to thermal shock in the context of the fractional order three-phase lag model. Marin et al. [24] 
derived some results in Moore-Gibson-Thompson thermoelasticity of dipolar bodies. Abbas along with his co-
workers explored problems in semiconducting thermoelastic medium [25, 26]. Recently, Lotfy et al. [27] 
investigated the stochastic plasma-mechanical-elastic wave propagation at the boundary of an elastic half-
space in a semiconductor material using photo-thermoelasticity theory. 
 The anti-plane shear crack problems have been extensively studied in the past since these types of problems 
help to understand the nature of the crack problem. Some of the earlier works on anti-plane problems include Rice 
[28], Paulino et al. [29], Erdogan [30], Ang et al. [31], Atkinson and Chen [32]. The anti-plane problems in the field 
of thermoelasticity have also been discussed by Pettinger and Abeyaratne [33, 34], and Zhou and Shui [35, 36]. 
Researchers have also studied different types of anti-plane problems in inhomogeneous media [37-43]. 
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 Anti-plane problems in elastic [29], viscoelastic [32], functionally graded material [30, 37-43], 
thermoelastic medium [33-36] have been discussed by researchers. The anti-plane problem in the context of 
Green-Naghdi (Type III) thermoelasticity has been unexplored. The current research deals with the 
investigation of the effect of shear stress in an infinite homogeneous thermoelastic strip of Green-Naghdi (Type 
III). Expressions for stress, displacement, and temperature are obtained by analytical technique. A numerical 
example is solved to complement the analytical results. The graphical results are shown for different values of 
the width of the thermoelastic strip. 
 
2. Basic equations 
 
 An infinite homogeneous thermoelastic strip of Green Naghdi (Type III) is considered (Fig.1). The 
lower surface of the strip represented by y h   is fixed. The upper surface of the strip   y h is displaced 

as given by    ( )  3 0u t w t u f t  , where 0u  is a constant and  f t  is a non-dimensional function of time. 

The crack is assumed to lie on the x  axis. This crack is of infinite extent along the z  axis. The crack surface 
remains traction-free. 
 

 
 
Fig.1. A uniform anti-plane displacement  0w u f t  and a constant thermal source act along the upper 

boundary  y h  of the strip. 

 
 The field equations, constitutive relations, and heat conduction equation under Green-Naghdi (Type 
III) homogeneous thermoelastic medium are expressed as follows [6]: 
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3. Problem definition 
 
 A two-dimensional antiplane shear fracture in Green-Naghdi (Type III) thermoelastic medium is 
considered. The components of displacement vector  , ,  1 2 3u u u u


 are functions of , ,x y  and t , since the 

deformation of the medium is parallel to the x y  plane. 
 Under anti-plane shear conditions, the only non-vanishing field variables are 
 
     , , , , ,3u x y t w x y t             , , , , ,    , , , , . xz x yz yx y t x y t x y t x y t       

 
For simplicity, new notations for displacement and stresses have been used. 
Hence the considered Eqs (2.1) and (2.5) for a two-dimensional problem may be written as: 
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Also, the stress components follow from Eq.(2.2): 
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Further, to simplify the numerical computations, the following dimensionless variables are introduced, 
 

  
* * * *

 ,      ,    ,    ,
1 1 1

1 1 1 t
x x y y w w t

c t c t c t t
          

 
'  ,   ij
ij

T
T

2

 
  

 


 
  (3.5) 

 

where *
*

 ,   .2 1
1 2

1

K2
c t

C c

  
 

 
 

Using Eq.(3.5) in Eqs (3.1)-(3.4), the equations are: 
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4. Problem solution 
 
 The response of physical variables may be studied by expressing them in the form of normal modes as 
proposed by Cinelli and Pilkey [44]: 
 

   , , , , t ibx
ij ijw T w T y e            (4.1) 

 
where   is a complex time constant and b  is the wave number in the x-direction. 
 The advantage of normal mode analysis is that it provides an exact solution without imposing 
conditions on the quantities and may be applied to large systems as well. 
 Using Eq.(4.1) in Eqs (3.6)-(3.9), two independent wave equations in terms of w  and T  are obtained as: 
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The solution of wave Eqs (4.2) and (4.3) may be expressed as 
 

  ,1 1m y m y
1 2w A e A e    (4.5) 

 

  .2 2m y m y
3 4T A e A e    (4.6) 

 
5. Boundary conditions 
 
 To understand the behavior of thermoelastic medium, boundary conditions play a vital role. Properly 
defined boundary conditions ensure that the considered problem relates to the real-world model which further 
leads to more reliable results. 
 The appropriate conditions along the boundary are: 

 The lower boundary of the strip is fixed 
 

 ,   ;w 0 y h    
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 The upper boundary of the strip is displaced 
 

  ,   ;t
0w u e y h   

 
 A thermal source acts along the upper boundary of the strip (5.1) 

 

  ,   ;t
0T P e y h   

 
 The temperature field is continuous across the boundary 

 

    , , .T x 0 T x 0   

 
 With the boundary conditions mentioned above, the following non-homogenous system of equations 
is attained: 
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  .3 4A A 0    (5.5) 
 
 The above non-homogenous system can be solved by simple mathematical calculations. The values of 

 , , ,  iA i 1 2 3 4 are then substituted in the expressions (4.5), and (4.6) to evaluate the components of 

displacement, stress, and temperature distribution using Eqs (3.8)-(3.9). 
 
6. Numerical computation 
 
 To support the theoretical results, a numerical example is presented. MATLAB software is used for 
numerical calculations.  
 Magnesium crystal is chosen as the material for numerical evaluation. The physical constants are taken 
from Dhaliwal and Singh [45], 
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 The calculations for the numerical analysis are carried out by taking .0 0u P 1 0   on the surface 

.  y 1 0  at .t 0 1 . The graphical results so obtained for the components of displacement, stress components, 

and temperature are shown in Figs 2 to 5 assuming that  0 1i    with . ,  .  0 10 3 0 2      and . .b 0 3  
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7. Discussions 
 
 It is observed from the analytical results that two independent waves namely, displacement wave and 
thermal wave exit in the medium. The graphical results show that the width of the strip affects all the physical 
quantities. The value of displacement decreases sharply in the range .  0 x 10 0   for .h 0 1 . However, these 
variations are opposite as the value of h  increases (i.e .h 0 5  and . )1 0 . It is observed from Fig.2, that the values 

of displacement increase sharply in the range .  0 x 10 0   for .h 0 5  and . .1 0  The variation of stress x  is 
oscillatory irrespective of width of the strip. It is interesting to see that the magnitude of the oscillation of stress 

x  is inversely proportional to the width of the strip. These variations of stress x  are shown in Fig.3.  
 

 
 

Fig.2. Variation of displacement w  with horizontal distance x. 
 

 
 

Fig.3. Variation of stress x  with horizontal distance x. 
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Fig.4. Variation of stress y  with horizontal distance x. 

 

 
 

Fig.5. Variation of temperature field T  with horizontal distance x. 
 
 The values of stress y  increase in the range .  0 x 10 0   for different values of width of strip. This 

increase in the value of stress y  becomes sharper as the width of the strip decrease. This variation of stress 

y  is shown in Fig.4. The variation of the temperature field is also oscillatory similar to the variation in stress 

 x but contrary to the variation of stress x , the magnitude of oscillation is directly proportional to the width 
of the strip. Hence, there is more variation in temperature change with width of the strip. These variations of 
temperature fields for different strip widths are shown in Fig.5. 
  



8 Anti-plane deformation in Green-Naghdi (type III) thermoelastic… 

8. Conclusion 
 
 The effect of shear stress in an infinite homogeneous thermoelastic strip of Green Naghdi (Type III) 
is investigated. The analytical and numerical results conclude that: 

1. An independent displacement wave and thermal wave exit in the medium. 
2. The width of the strip affects all the physical quantities. 
3. The variation of stress x  is oscillatory and the magnitude of oscillation is inversely proportional to the 

width of the strip. 
4. The shearing stress  yz is less oscillatory as compared to the shearing stress .xz  

5. The variation of the temperature field is also oscillatory but the magnitude of oscillation is directly 
proportional to the width of the strip. 

6. The problem has wide applications in the field of fracture mechanics, earthquake engineering, acoustic 
wave propagation, thermal stress analysis. etc. 

7. The present study may be extended to study the anti-plane problems on the interface of two dissimilar 
media. 

8. However the anti-plane problems restricts the model to simple geometries whereas the complex three 
dimensional shapes cannot be analysed using these assumptions. 

 
Nomenclature 

 *C  – specific heat at constant strain 

  ije  – strain components 

 kke  – cubical dilatation 

 ih  – heat flux  

 1K  – thermal conductivity 

 2K  – material characteristic of the theory 

 Tk  – isothermal compressibility 

 T – temperature above the reference temperature 0T  

 0T  – reference temperature 

 U  – specific internal energy 

 iu  – displacement components 

   – constant of thermal expansion 

 ij  – Kronecker delta 

 ,    – Lame's coefficients 

   – density of solid 

  ij  – stress components 

  3 2       – thermal modulus 
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