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The objective of this paper is to develop a method for the rapid estimating springback in the hydroforming 
process of circular sheets. First, the springback behavior has been studied with using finite element simulations for 
various configurations such as sheet thickness, sheet diameter, and deformation pressure. The results obtained 
shows an excellent correlation with the experimental data. Next, the springback of circular sheets in the setting of 
hydroforming has been predicted using the artificial neural networks (ANN) approach. Statistical measures, 
specifically the mean square error (MSE) and the coefficient (R2) are implemented for evaluating this approach. 
The results reveal that artificial neural networks provide an accurate, high-performance model for predicting the 
springback of circular sheets.  
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1. Introduction 

 
 The hydroforming process is widely utilized in various industrial sectors, especially in the automotive 
and aerospace industries, which necessitates that sheet metal components should have a specific set of 
geometric characteristics and mechanical properties [1-2]. This process, particularly in its deep hydrodynamic 
drawing (HDD) variant, enables sheet metal to be shaped using high fluid pressure. Hence, replacing the 
conventional punch to ensure precise, homogeneous shaping. A standard sheet metal hydroforming operation 
is illustrated in Fig.1. The blank metal is placed in the die and held in position by the blank holder before it is 
deformed under the action of fluid pressure. This pressure generally ranges between 70 and 700 bar (low 
pressure) and can reach between 1.400 and 4.800 bar (high pressure) in exceptional cases, particularly for the 
manufacture of complex, high-precision parts [3]. This technology also reduces the effect of friction between 
the blank and the rigid tools used in conventional processes (e.g. the punch) [2]. The growing adoption of this 
technology in the automotive industry stems from the need to design lighter vehicles in order to reduce energy 
consumption and pollutant emissions, while guaranteeing optimum mechanical performance (e.g. impact 
resistance, maximum stress, fatigue, etc.) [1, 2, 4-7]. However, this requirement calls for the use of higher-
strength materials, leading to a springback phenomenon. This is the tendency that the sheet to return to its 
original shape after the hydroforming operation. It is considered as one of the issues found hugely in 
hydroforming process and more particularly within the automotive industry, it is crucial to correctly predict 
the springback in order to achieve the desired shape. Without the required shape, assembly of parts becomes 
extremely difficult and time-consuming. This also results in an increase in the time required for the assembly 
process [8]. 
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Fig.1. Principle of the hydroforming process [3] 
 
 Many approaches to sheet metal forming and springback prediction have been taken by different 
researchers incorporating various materials and using different modeling and analysis methods. For example, 
Jiang et al. [9] have studied the springback of 5A02 aluminum alloy during hydroforming. They have used 
theoretical analysis and numerical finite element simulations. They have illustated that hydraulic pressures (1 
to 30 MPa) and loading paths have a significant influence on springback. This influence varies depending on 
loading conditions and applied pressures. Su et al. [10] have studied the hydroforming of 316L stainless steel 
bipolar plates using an experimentally validated FEM model. They have analyzed the influence of forming 
pressure and grain size on springback. The results show a non-linear variation of springback with pressure, 
and an increase in grain size reduces springback, reaching a maximum of .  3 1 m  for a grain size of .  .60 7 m  
Sun and Lang [11] have obtained a formulation of springback as a function of hydraulic fluid pressure during 
sheet bending and stretching. Using these relationships, they have shown that when the fluid pressure 
(deformation load) is higher, the tensile capacity becomes greater, which reduces the springback. In addition, 
they have analyzed and optimized the hydroforming process for aluminum alloy engine covers, and the optimal 
process parameters that can reduce the forming steps. They found that part quality could be improved by 
increasing the pressure applied. Çelik et al. [12] have analyzed the influence of radius and angle of curvature, 
as well as thickness and material type on springback during diaphragm sheet forming. Experiments were 
carried out with thicknesses ranging from 0.813 to 2 mm, and results were compared using factorial designs 
and ANOVA analysis. The study highlights the crucial role of these parameters in mold design, which enables 
better compensation of springback and optimization of forming quality. Hiseeb and Khleif [13] have carried 
out an experimental study. The latter has shown that the springback of low-carbon steel parts (1008-AISI) 
decreases significantly when the fluid pressure and holding time increase. To predict the final geometry of 
aluminum alloy parts. Churiaque et al. [14] have implemented the finite element method using the PAM-
STAMP software and some insightful experiments. They have shown that finite element analysis is a very 
useful method for estimating the springback of hydroformed parts. They have drawn a conclusion that material 
characterization is an essential step to obtain reliable springback predictions. Lam et al. [15] have employed 
experimental testing and finite element method (FEM) simulation to study the springback of aluminum plates 
with thicknesses ranging from 3 to 8 mm during creep forming. In addition, they have examined the influence 
of initial distortion and residual constraints on the prediction of springback. Fartouh et al. [16] have 
characterized springback during the hydroforming of circular blank using finite element analysis. Later, they 
have examined how different material factors can affect the springback of hydroformed parts and concluded 
that these parameters have a significant impact on springback. Nassraoui and Radi [17] have shown that 
numerical tools combining the finite element method and optimization techniques, play an essential role in 
controlling, improving and optimizing forming processes in order to minimize the rate of defective parts. 
Śloderbach [18] demonstrated that the height of spherical shells formed by hydraulic bulging is influenced by 
stability conditions and key material properties, including hardening behavior and anisotropy. Their work 
evaluates sheet metal drawability by identifying acceptable plastic strains and associated shell heights under 
selected instability scenarios. 
 The use of artificial neural networks (ANN) combined with the finite element method (FEM) is an 
approach commonly employed in conventional forming processes such as stamping and bending. Several 
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studies that take into account the variability of process parameters and material properties have been carried 
out to model and predict the springback phenomenon [19-21].  
 To fill in the lacuma in this line of research, this work proposes a neural network model for the 
prediction of springback in sheet hydroforming processes. A numerical finite element simulation model of 
circular sheet hydroforming has been carefully prepared and validated using experimental tests (bulge test ) in 
order to generate training data for artificial neural networks (ANN). This study analyzes the parameters that 
influence the springback of steel S235 such as fluid pressure, blank diameter and blank thickness.  
 
2. Methodology  
 
2.1. Finite element simulation model  
 
 The researcher has employed the finite element method analysis to simulate the hydroforming and 
springback of S235 steel sheets using ABAQUS software. The hydroforming simulations have been conducted 
in two steps. The first step consists of simulating the hydroforming operation of the sheet using an explicit 
calculation, while the second step consists of simulating the springback after removing the load. The finite 
element model and the applied boundary conditions (the clamped die and the end of the fixed blank) are shown 
in Fig.2 (a) and (b). The S4R shell element is implemented to discretize the blank with 7717 elements. The 
rigid analytical element is used to discretize the die (The die is shown here, although it is a rigid body, in order 
to apply the contact condition between it and the blank metal). A mesh sensitivity analysis was performed to 
obtain a sufficient mesh density to ensure accurate results. Figure 2 (c) shows mesh sensitivity analysis: Von 
Mises stress vs. element size. The results of the distribution of sheet displacements before and after springback 
illustrated in Fig.3. 
 

 
 

 
 

(a) 
 

(b) 
 

(c) 
 

Fig.2. (a): FE model of sheet hydroforming, (b): boundary conditions and (c): mesh sensitivity. 
 

  
 

(a) 
 

(b) 
 

Fig.3. (a): Displacements before springback and (b): displacements after springback. 
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 The Coulomb friction law model is applied to define the tangential behavior between the die and the 
blank. A surface-to-surface contact type with a friction coefficient of .0 5   is used for the lubricated 
steel/steel contact and similar the study [22]. The experimental stress-strain data obtained from the tensile 
testing was used as input to the ABAQUS model [23]-[24]. The material properties of the S235 raw sheet, 
obtained from a tensile test, are shown in Tab.1. In addition, the yield strength varies with plastic deformation 
according to the hardening law. The isotropic hardening law of (Swift, 1952) is represented by Eq.(2.1) [25]. 
 

   0

n
k    . (2.1) 

 
 Different simulations of the hydroforming and springback have been realized by modifying the various 
process parameters (dimensions of the initial part (sheet), the die and the pressure). The thickness T is varied 
from 1 mm to 3 mm, the dimensions of the sheet diameter D are 120 mm, 160 mm, and 198 mm and for the 
pressure P is varied from 1 MPa to 2 MPa. 
 
Table 1. Elastic properties of S235 [23-24]. 
 

Parameter Value 
density  7850 kg/m3 
yield strength  235 MPa 
Poisson’s ratio  0.33 
Young's modulus 21000 MPa 
hardening coefficient  572.85 MPa 
exponent of hardening 0.145 

 
2.2. Experimental procedure  
 
 The experimental hydroforming tests have been conducted in the materials science laboratory in the 
school where the researcher works. Figure 4 shows the experimental equipment for hydroforming circular 
blank, the die assembly, blank holder and clamping system adding to that an oil evacuation system. The 
pressure generation system is a hydraulic unit with a capacity of 150 bar. This system also includes:  

- displacement sensor and pressure sensor with data readout,  
- data acquisition system, 
- computer equipped with data acquisition and processing software,  
- cables, accessories and sensor supports etc.  

 The experimental tests had been executed as soon as the various parameters (displacement and pressure 
sensors) had been adjusted and checked in the condition of no load. The geometric characteristics of the 
hydroformed blank have been presented in Tab.2. 
 
Table 2. Experimental validation plan. 
 

Test N° Blank diameter (mm) Blank thickness (mm) 
Test 1 198 3 
Test 2 120 2 
Test 3 120 1 
Test 4 198 1 
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Fig.4. Experimental equipment for hydroforming of circular blank. 
 
2.3. Methodology of machine learning: artificial neural networks  
 
 To estimate springback in the hydroforming process of circular sheets, we have employed a machine 
learning-based strategy. The inputs of the model for each sheet deformation scenario are diameter, thickness, 
deformation pressure and finite element simulation (FEM) results. Figure 5 illustrates the basic structure of 
this approach. 
 

 
 

Fig.5. Machine learning diagram. 
 
 The development of artificial neural networks as a new discipline in applied computer science has 
made it possible to solve a number of problems encountered in modelling and optimising various 
manufacturing processes. They have demonstrated excellent success in modelling complex interactions (both 
linear and non-linear). This technique is particularly useful for simulating complex problems using physical 
and mathematical models, thanks to its learning capacity based on practical cases. Among the tools of this 
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technique are artificial neural networks, which draw on both mathematical theories of learning, information 
processing and control and human biological neural systems.  
 The input-receiving layer that sends it to the hidden layer - these used for learning ANN - is named 
the input layer  ,  ,  ,.... 1 2 3 nX X X X . The neuron receives the weighted values  ,   and ....1 2 3 nW W W W and 

uses a threshold function, such as the sigmoid function, to modify them. Responses from the hidden layer are 
received by the output layer, which generates an equivalent result. Figure 6 illustrate the basic structure of an 
artificial neuron.  
 

 
 

Fig.6. Basic structure of an artificial neuron. 
 
The following Eq.(2.2) represents the intermediate output for each neuron: 
 

  .
p

i j ij j
j 1

S X W b


   (2.2) 

 
 p : the number of entries, 

 jX : denotes the value transmitted, 

 ijW : the weight stored between the i  and j  neurons, 

 jb : refers to the bias.  

 
The following Eq.(2.3) represents the overall output of all the neurons: 
 
  ( ).i iy f S  (2.3) 
 
f : the function of activation. 

 The Levenberg-Marquardt (LM) algorithm has been used to train the network. This algorithm is 
specifically designed to minimize the sum of squared errors. Figure 7 shows the main steps of the learning 
process. 
 Equation (2.4) can be used to update the weights and biases in each neuron: 
 

  .z 1 z z 1
ij ij ijW W W     (2.4) 

 
 Equation (2.5) can be used to calculate the change in weight based on the Levenberg-Marquardt 
algorithm. 
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    ,1z 1 T T z z 1
ij ij ijW J J I J e W W

           (2.5) 

 
 z : represented the learning step, 

 z 1
ijW  : it refers to the ± incremental adjustment in the weight, 

 J : is a Jacobian matrix constituting the primary derivatives of the network errors as a function of the 
      weight and the biases, 

  : is the training factor, 

 I : the matrix of identity, 
 e : the error vector of the network, 
  : momentum term. 

 
 Equation (2.6) can be used to calculate the mean square error (MSE)  
 

   
p

2
j j

j 1

1
MSE T a

p 

   (2.6) 

where:  
 p : represented the number of output and input data, 

 ja : are the outputs derived from the inputs w, 

 jT : are the predicted values. 

 

 
 

Fig.7. Identification of the optimum ANN architect. 
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Equation (2.7) can be used to calculate the absolute fraction of variance 2R : 
 

  

( )

.

( )

p
2

j j
j 12

p
2

j
j 1

T a

R 1

a





 
 

 
   

 
 
 




 (2.7) 

 
 Figure 8 illustrates the ANN structure used in this study. It consists of three input layers (thickness T, 
diameter D and pressure P), one hidden layer and one output (springback). The training data for the neural 
network are the numerical simulation results. We vary the neurons in each hidden layer to analyze the impact 
of the number of layers. Different networks were tested for each possible configuration, and the model with 
the lowest error was selected. Table 3 shows the impact of the hidden layers. The neurons in the hidden layer 
required to achieve the minimum MSE was set to 20. The final architecture is thus defined as 3-20-1.  
 

 
 

Fig.8. Neural network diagram. 
 

Table 3. MSE and 2R  for each case. 
 

Number of neurons MSE 2R  
10 0.0067231 0.93113 

12 0.0056112 0.95312 

14 0.0045631 0.96125 

16 0.00029671 0.97255 

18 0.00013571 0.97621 

20 4.31E-06 0.98302 
 
3. Results and discussion 
 
3.1. Experimental validation test 
 
 The experimental tests, we measured the pressure level (P in bar) and the displacement at the center 
of the blank (U in mm) for different blank thicknesses and blank diameters. Figure 9 shows the displacement 
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at the center of the sheet (in mm) as a function of the pressure of the deformation (in Bar). Figure 10 shows 
the sheet metal before and after deformation.  
 

a) 

 

 b) 

 
     
c)  d) 

 
 
Fig.9. Evolution of the displacement at the center of the sheet (U, in mm) for the four experimental tests: 

(a): Test 1, (b): Test 2, (c): Test 3 and (d): Test 4. 
 

a) 

 

 b) 

 
 

Fig.10. (a): The sheet metal before deformation and (b): The sheet metal after deformation 
 
3.2. Validation of the FEM model 
 
 To validate the developed finite element analysis model, a comparison has been made between the 
experimental results and the numerical results (FEM). Figure 11 shows the distribution of sheet displacements 
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obtained by FEM. This validation has been realized under the same test conditions (pressure, thickness and 
diameter), and we have compared the displacement at the center of the blank (UEXP and UFEM). From the Tab.4 
and Fig.12, we can deduce that the calculated errors range from 0.28% to 9.34%. These discrepancies can be 
attributed to several factors including the inherent uncertainties in the experimental tests such as measurement 
errors, variations in material properties, as well as potential differences in loading conditions between the 
actual tests and the numerical simulation (for instance, the pressure applied to the sheet in the numerical test 
is assumed to be uniform). Additionally, simplifications and approximations in the numerical model such as 
the modeling of the steel material or boundary conditions can also contribute to these discrepancies. These 
errors are generally acceptable for this type of simulation, and the validity of the model is satisfactory. Figure 
12 illustrates the error obtained between the experimental results and the numerical results. 
 
a) 

 

 b) 

 
     
c) 

 

 d) 

 
 
Fig.11. The displacement distribution of the blank obtained using the finite element method (FEM): 

 (a): Test 1, (b): Test 2, (c): Test 3 and (d): Test 4. 
 

 
 

Fig.12. FEM displacement compared to experimental results. 
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Table 4. Comparison of numerical and experimental displacement results. 
 

Test N° Diameter mm Thickness mm Pressure MPa UExp mm UFEM  mm Errors % 
Test 1 198 3 1.639 7.89 7.334 7.05 
Test 2 120 2 2.061 10.9 10.930 0.28 
Test 3 120 1 1.168 9.47 10.10 6.65 
Test 4 198 1 0.611 8.01 8.758 9.34 

 
3.3. Springback prediction with FEM 
 
 This study takes into consideration various thicknesses, sheet diameters and feed pressures. The results 
obtained from the simulation of springback in circular blank during the hydroforming process are presented in Tab.5 
and Fig.13. These results clearly showcase that the amount of springback reduces when there is an increase in forming 
pressure and sheet diameter. However, it is noticed that springback increases as the sheet thickness increases.  
 

   
 a)  b)  c) 

 
Fig.13. Effect of the thickness, sheet diameter, and deformation pressure on springback (a):  , e 1mm  

 ; ; D 120 160 198mm  and   ; . ; Pressure 1 1 5 2MPa , (b): , e 2mm   ; ; D 120 160 198mm  and 

  ; . ; Pressure 1 1 5 2MPa  and (c):  ,  ; ; e 2mm D 120 160 198mm   and   ; . ; Pressure 1 1 5 2MPa  

 
3.4. Springback prediction with ANN 
 
 Figure 14 presents the predictions of springback by neural networks (ANN). The linear regression 
between all the springback values demonstrates that the points are distributed approximately on a straight line 
with a gradient approaching 1. 
 

 
 

Fig.14. Regression between ANN predicted and FEM Simulation results 
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Fig.14. Regression between ANN predicted and FEM Simulation results 
 
Table 5. Comparison of numerical and predicted values of springback. 
 

Test N° Thickness 
mm 

Diameter 
mm 

Pressure 
MPa 

Springback FEM 
mm 

Springback ANN 
mm 

Errors % 

1 1 120 1 1.006 0.896 10.9 
2 1 120 1.5 0.548 0.56 2.2 
3 1 120 2 0.3 0.28 6.7 
4 1 160 1 1.157 1.037 10.4 
5 1 160 1.5 0.43 0.38 11.6 
6 1 160 2 0.27 0.24 11.1 
7 1 198 1 0.665 0.58 12.8 
8 1 198 1.5 0.37 0.34 8.1 
9 1 198 2 0.43 0.39 9.3 
10 2 120 1 1.0865 0.9765 10.1 
11 2 120 1.5 0.776 0.866 11.6 
12 2 120 2 0.657 0.597 9.1 
13 2 160 1 1.038 1.028 1.0 
14 2 160 1.5 0.847 0.947 11.8 
15 2 160 2 0.54 0.48 11.1 
16 2 198 1 1.244 1.134 8.8 
17 2 198 1.5 0.417 0.407 2.4 
18 2 198 2 0.13 0.141 8.5 
19 3 120 1 0.4714698 0.50147 6.4 
20 3 120 1.5 0.892 0.882 1.1 
21 3 120 2 0.598 0.52 13 
22 3 160 1 1.26309 1.3309 5.4 
23 3 160 1.5 0.813 0.903 11.1 
24 3 160 2 0.738 0.68 7.9 
25 3 198 1 1.313 1.403 6.9 
26 3 198 1.5 0.991 0.881 11.1 
27 3 198 2 0.64 0.71 10.9 
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3.5. Discussion  
 
 The results obtained with the FEM method for springback prediction shows that forming pressure and 
blank diameter are the two most influential parameters on the springback of hydroformed sheets. The latter 
decreases when the forming pressure and sheet diameter increase. However, sheet thickness plays a significant 
role in this context since the sheet thickness increases when the springback increases. The applied artificial 
neural networks approach based on the Levenberg-Marquardt algorithm has been adopted as the learning 
method for multi-layer networks. Different configurations have been tested with the neurons the hidden layer 
is varying from 10 to 20 (Tab.3). Statistical measures, specifically the mean square error (MSE) and the 
coefficient (R2) are used for evaluating this approach. The most convenient results have been obtained which 
used 20 neurons. ANN prediction of springback has been confirmed with numerical results (FEM). Table 6 
and Fig.15 show the numerical and the corresponding predictions of the artificial neural network (ANN) for 
springback. It can be deduced that the maximum error is 13%. These results show that the values obtained by 
the FEM method and those predicted by the ANN model were very close to each other. This discrepancy 
remains acceptable within the scope of this study and can be regarded as a potential area for improvement for 
ANN models. Future improvements could include the integration of additional training data and optimization 
of the neural network structure, which would help reduce the gaps between FEM and ANN results while 
maintaining the speed of the prediction process.  
 

 
 

Fig.15. Predicted springback values: ANN vs. FEM. 
 
4. Conclusions  
 
 This paper presents experiments and numerical simulations of the hydroforming process of a circular 
S235 steel sheet. The comparison between the numerical simulations and results from experiments, in terms 
of displacement at the center of the sheet shows excellent consistency, which makes it possible to validate the 
numerical analysis carried out using the finite element method (FEM) simulation. The FEM and ANN methods 
have been used later to predict springback. The springback predicted by the numerical simulations was used 
as input for the ANN, it was trained using the Levenberg-Marquardt (LM) backpropagation algorithm with 20 
neurons and was built on a multilayer forward propagation architecture. A mean square error (MSE) of 4.31E-
06 and a coefficient of determination R2 of 0.98302 were obtained. The results revealed strong agreement 
between the springback predictions obtained by ANN and those derived from the FEM method. However, our 
prediction model could be improved in a future studies by using experimental values of springback without 
relying on numerical simulation (FEM). Integrating these experimental data would allow for better adjustment 
of the model parameters. Furthermore, increasing the diversity of the training data, as well as optimizing the 
number of neurons in the hidden layers would help improve the generalization of the ANN model. These 
improvements would make the model more robust to variations in process conditions and increase its ability 
to predict results in scenarios not observed in the initial training dataset. 
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Nomenclature 
 
 ANN  – artificial neural network 

 ia  – outputs derived from the inputs 

 jb  – refers to the bias for the neuron 

 e  – error vector of the network 

 FEM  – finite element analysis 
 I  – matrix of identity 
 J  – jacobian matrix 

 k  – hardening coefficient  

 MSE  – mean square error 

 n  – strain hardening exponent 

 2R  – coefficient of determination 
 is  – intermediate output for each neuron 

 jT  – predicted values 

 U  – displacement, mm  

 ijw  – the weight stored between the i and j neurons 

 jX  – denotes the value transmitted 

 iy  – the function of activation 

 Z  – represented the learning step, 
   – momentum term 

 ijw  – it refers to the ± incremental adjustment in the weight 

   – coefficient of friction 

   – equivalent strain 

 0  – elastic strain 

   – training factor 

   – equivalent stress, MPa 
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