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In this work, the behaviour of shear waves in a FSPL that is initially stressed exhibits transverse isotropy is 
investigated. The layer is located on an elastic half-space, characterized by a triangular shaped irregularity at 
interface of contact. This research derives the dispersion equation of shear waves utilizing elasticity theory by Biot, 
combined with perturbation techniques and Fourier transformations. Computational simulations of the dispersion 
equation, performed using MATLAB, highlight important findings, such as when inhomogeneity, anisotropy, and 
porosity increase, a noticeable decrease in phase velocity is observed. Additionally, phase velocity drops 
significantly with rising wave numbers. The graphical results reveal that there is a significant influence on the 
dimensionless phase velocity by the wave number, irregularity depth, initial stress, and anisotropy, highlighting the 
complex interplay between these factors in wave propagation in such layered media. This research provides deeper 
insight into the behaviour of shear waves in complex geological formations, with potential applications in 
geophysical exploration and material science. 

 
Key words: triangular irregularity, material heterogeneity, shear waves, initial stress, porous media. 

 
1. Introduction 

 
 The scientific investigation of seismic waves that are the energy waves produced by an instantaneous 
release of energy within the Earth is termed as seismology. Earth is considered a layered medium made up of 
layers that have different mechanical properties and differing thicknesses. The seismic wave propagation is 
greatly influenced by the Earth's heterogeneous composition, which contains a particularly hard layer, the stiff 
interface, and the medium porosity. With more in-depth research on Earth's structure, seismologists have found 
that wave propagation is more influenced by the effects of inhomogeneity and boundaries with free surfaces. 
Many researchers have examined the seismic wave propagation in stratified material with varying degrees of 
success. This phenomenon has significant applications in seismology and geophysics. Theoretical research on 
seismic waves and elastic layering mediums is highly valuable due to its numerous potential applications in 
soil mechanics, structural and earthquake engineering, geophysical science, and seismology. Rich insights into 
the Earth's interior have been obtained via a variety of research projects and experiments involving the seismic 
wave behaviour through the layers of Earth. Geological media generally have the property of anisotropy. 
Transverse isotropy, most fundamental kind of anisotropy that represents media characterized by a single axis 
of symmetry describes genuine media of geophysical importance such as the inner core, the upper mantle, 
layered lower crust, and a stack of sediment layers. The study of elastic waves spread out from an earthquake 
possess the highest level of reliability and conclusions regarding the Earth’s internal constitutions. The first 
study of elastic waves showing the effect of the initial stress was conducted by Biot [1]. This research involved 
deriving the wave equations, studying the wave transmission and reflection phenomena and exploring the 
influence of the different factors on the wave propagation characteristics. A hypothesis for the movement of 
the stress vibrations in a poroelastic material with a viscous compressible fluid inside was developed by Biot 
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[2]. A material that has porous voids within it is said to be porous. Generally speaking, the pores are filled with 
liquid, or gasses. A fluid saturated medium is a phenomenon in fluid mechanics that consists of an 
incompressible fluid phase combined with elastic solids. Since the Earth's structure is complicated and differs 
across its strata, seismologists are primarily interested in studying how waves propagate in monoclinic media. 
These types of mediums are vastly used in the seismology field to comprehend the seismic waves behaviour 
generated during earthquakes. Numerous researchers have examined the propagation of seismic waves, but 
only few have investigated the impact of various types of irregularities on the seismic wave behaviour. 
However, majority of the research on this topic does not focus on porous fluid-filled media with surface 
irregularities. Bhattacharya [3] investigated the dispersion curve for the Love waves resulting from the crustal 
layer that is transversely isotropic with irregularities. Chattopadhyay et al. [4] investigated the effect of 
irregularities in the thickness of crustal layers that is transversely isotropic on the dispersion equation for Love 
waves, providing rich insights into the seismic wave behaviour inside the Earth. Chattopadhyay et al. [5] 
investigated shear waves behaviour in a monoclinic layered structure placed over an elastic half-space 
characterized with a rectangular shaped irregularity at point of contact. Gupta et al. [6] explored the impact of 
anisotropy and irregularities on shear waves movement. The perturbation technique was employed to derive 
the dispersion equation and to generate phase velocity curves for various irregularities by utilizing the porous 
medium parameters which were proposed by Biot [7] that introduced a theoretical framework describing 
coupled behaviour of the solid and fluid within porous medium. Crampin [8] studied the shear waves that stress 
changes before occurrence of earthquake. The Love waves dispersion equation in a FSPL that is transversely 
isotropic situated atop an elastic half-space was obtained by Konczak [9]. In another study, Konczak [10] 
examined how shear waves move through multilayered media containing fluid-saturated porous layers. 
Numerous researchers have since analysed shear wave propagation across diverse heterogeneous media. 
Because a porous media is intricate in nature and has many geometrical properties, such as porosity and specific 
internal area, it is challenging to characterize geometrically. Fluid-saturated porous rocks can be found on or 
beneath the surface of the Earth as stone, groundwater, and oil sentiments. Thus, research on shear wave 
behaviour in fluid saturated porous medium has a significant influence. Biot worked on the single-phase elastic 
wave propagation for liquid-filled porous materials. Using the perturbation technique, the frequency relation 
was calculated for various irregularity sizes, and Biot examined the impact of these irregularities on phase 
velocity curves. The significance of irregularity and rigidity in FSPL, anisotropic elastic layers for both single 
and multi-layered was evaluated by Kumar et al. [11]. Saha et al. [12] studied how irregularities affect shear 
wave movement in layered systems. Lastly, Saini and Kumar [13] examined the influence of a parabolic shaped 
irregularity and initial stress on the behaviour of Love waves in a FSPL overlying an elastic half-space. The 
frequency equation was formulated by Pal et al. [14] after the examination of the surface waves behaviour in 
a FSPL between a homogeneous liquid layer and an orthotropic half-space. The behaviour of Love waves in a 
transversely isotropic layer situated atop an elastic half-space was investigated by Alam and Kundu [15] under 
the conditions of initial stress. Kakar and Kakar [16] examined the influence of initial stress, irregularity, and 
porosity on the behaviour of Love waves inside an inhomogeneous crustal layer lying above an inhomogeneous 
half-space. The irregularity has been represented as a parabola in half-space. Love waves are seen to propagate 
through this presumptive medium and it is possible to derive the phase velocity dispersion equation. Mahanty 
et al. [17] studied the behaviour of shear waves in both inhomogeneous and homogeneous fiber-reinforced 
media using the model of cylindrical Earth. Sahu et al. [18] investigated the behaviour of shear waves in a 
FSPL situated between elastic half-spaces. The study's main objectives were to analyse the behaviour of shear 
waves as they propagate through this complex medium, taking into account the effects of saturation and the 
half-space's heterogeneity. It also involved deriving the dispersion equations, studying how different 
parameters the influence the wave propagation, and studying wave transmission as well as reflection 
phenomena. The impact of rectangular shaped irregularity on the behaviour of Love waves in a fiber-reinforced 
media situated above a half space was examined by Prasad and Kundu [19]. The impact of several types of 
material inhomogeneity on a complex structure comprising two superficial layers situated above a 
homogeneous isotropic initially stressed half space was examined by Saha et al. [20]. The Love waves 
behaviour in compressible elastic media under uniform initial stress was studied by Ejaz and Shams [21]. 
Lastly, Kumar and Saini [22], examined behaviour of Love waves in a FSPL exhibits anisotropy resting on a 
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half-space. It has been found that pre-stressing in the media, along with the anisotropy and porosity of the 
porous layer significantly influences the phase velocity of seismic waves. These results advance our 
understanding on wave propagation in complicated and varied mediums. Many researchers have conducted 
research in this field such as Poonia et al. [23], Saini and Poonia [24], Saini and Kumar [25] and Kumar et al. 
[26] etc. 
 The main idea of this paper is to study the behaviour of shear waves in a FSPL which is transversely 
isotropic overlying an elastic half-space characterized with triangular interfacial irregularities under initial 
stress conditions. In this work, the perturbation technique combined with Fourier transform method was 
employed to derive the dispersion relation for shear waves. The resulting dispersion equation demonstrates the 
influence of several parameters (depth of irregularity, wave number and layer’s width) on shear wave 
behaviour for the specified problem. The phase velocity versus the wave number have been plotted for various 
ratios of irregularity depth to the width of the layer and various parameter values of inhomogeneity using 
MATLAB. 
 
2. Mathematical formulation of the problem 
 
 Consider a model having a FSPL that is transversely isotropic of thickness H (termed as medium 1M ) 
resting above an elastic half-space that is non-homogeneous in nature under the initial stress conditions (termed 
as medium 2M ). Here, we consider the triangular shaped irregularity with width 2s  and depth 1H . The 
location of origin of xz  plane is on the centre point of irregularity's interface. Along the positive z  axis 
direction, the disturbance source is positioned at d distance from the origin (where ).1d H> The problem’s 
geometry is illustrated in the figure. 

 

 
 

Fig.1. Mathematical modeling of the problem. 
 
The equation of the considered triangular shaped irregularity has been taken using Kumar et al. [26] as 
 
  ( )z h x= � , 
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where , ,1H 1 s 0
2s

= << ≠ 1H  is the height of irregularity and 2s  is the width of the irregularity. 

 
3. Governing equations 
 
To study the propagation of Love waves through the structure, it is important to first set up the 
governing field equations and material relations for both mediums. 
 
3.1. For 1M  medium 
 Biot [2] gives the basic equations of motion, assuming no body forces are present.  
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where the terms ; , , ,ij i j 1 2 3=σ  represents the tensor components of stress per unit area for the solid. The 
fluid pressure is denoted as ,fpρ = −  where p  represents fluid pressure and f  represents medium's porosity. 
The components of the solid and fluid are iu  and iU  respectively. The effects of inertia for the moving fluid 
are taken into consideration by mass coefficients ., ,11 12 22ρ ρ ρ  
The stress strain relation for medium 1M  using Kończak [10]: 
 

  

                               
                               
                                      

               

1 2 2 3 6

2 1 2 3 6

3 3 4 7

11

22

33

23

31

12

2C C C C 0 0 0 C
C 2C C C 0 0 0 C
C C 2C 0 0 0 C
0

+ 
  + 
 
 

= 
 
 
 

σ
σ
σ

σ


σ 

σ
σ


 

                              
                                            
                                            

                                        

5

5

1

6 6 7 8

0 0 2C 0 0 0
0 0 0 0 2C 0 0
0 0 0 0 0 2C 0
C C C 0 0 0 C







,

11

22

33

23

31

12

e
e
e
e
e
e
E

  
  
  

   
   
   
   
   
   
   

 

 (3.2) 

 

where  ( ), , , ,, ,,j j k k ij i j j i
1E divU U e divu u e u u
2

= ≡ = ≡ = +  (3.3) 



R.Kumar et al.  93 

 
and , ,...,1 2 8C C C  are materials constant.  
The fundamental equation of shear-waves moving in the xz  plane while particles displacement takes place in 
the y -axis, 
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By using (3.2) and (3.3) in (3.1), the system of equations is formulated as: 
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After the elimination of 2u  and 2U from the equation (3.5), yields to 
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where , ,11 12ρ ρ and 22ρ  are the mass coefficients, and the displacement vector components for the fluid and the 
solid represented as 2U and 2u respectively and ,1 5C C  are the constant for the material. 
 
3.2. For 2M  medium 
 Ewing et al. [27] provides the basic motion equations for the lower half-space, assuming no body 
forces are present,  
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where ,ij jσ  represents stress tensor components, iu  represents the vector displacement components, P  is the 
initial stress when there is no body forces and ρ  is the density. The term Ω  represents vector component for 
rotation in the lower half-space. 
The constitutive relations using Kończak [10] are 
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In this context, λ  and μ  represents the elastic coefficients given by Lame varying with , ,x y z  and ijδ  
represents the Kronecker delta. This paper focuses on shear waves propagating in the xz  plane with 
displacements aligned along the y  direction and represents independently of the y  co-ordinate. Hence, 
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where ,uβ =
ρ

 μ  represents the Lame’s elastic coefficient, P  represents the initial stress when there is no 

body forces and ρ is the density.  
 
4. Boundary conditions 
 
 To account the behaviour of the displacement components and stress component at the boundaries, 
certain conditions are included when applying the basic motion equations to a bounded medium. The problem 
under consideration has the following boundary conditions: 

• At free surface, where ,z H= −  there is no shear stress component, i.e., 
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• At interface of contact of the half-space and layer, where ( ),z h x=ε  the stresses and displacement are 
continuous, i.e., 
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5. Solution of the problem 
 
 The following equation is given for the waves that moves along the x -axis and vary harmonically with 
time t , 
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where ω represents the angular velocity. 
Now, using Eq.(5.1) in Eq.(3.6) and Eq.(3.10), it reduces to: 
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Ω  represents the frequency(dimensionless), and GC  denotes the shear wave phase velocity in medium 1M . 

Define the Fourier transform ( , )
0
2u z η  of ( , )0
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By applying Fourier transformations, following by Kumar et al. [11], Eq.(5.2) changes to  
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The solution of Eq.(5.5), 
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here, , , , ,A B A B D all depend on .η  
Thus, by applying inverse Fourier transformations, proceeding as by Kumar et al. [11], results in 
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the last term introduced in the integrand of ( , )0

2v z x is due to the source of the disturbance in the lower elastic 
half-space. 
 
6. Methodology 
 
 The following approximations given by Eringens and Samuels [28] is used. As ε is very small and α  
can be arbitrary. 
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Now using the boundary conditions (4.1)-(4.3) in Eq.(5.7) and approximation method from Eqs (6.1)-(6.2), we have 
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Solving the above system of Eqs (6.4) yields,  
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Thus, the displacement vector in isotropic layer using Eq.(6.5) becomes 
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Using Willis's asymptotic formula [29] and ignoring terms with / s2 and higher coefficients powers of / s2
when s is large, yields  
 

  [ ]sin ( ) ( ) ( ) ( )2
1 s k k d 2 k k

2 2
∞

−∞

λ φ − λ + φ + λ λ ≡ φ = πφ
λ

π
 . (6.11) 

 
Using Eq.(6.11) in (6.9), we obtain 
 

  ( ) ( ).1
2 1

HW W 2s k 2 k− μχ = μφ = μ φ
ε

 (6.12) 

 
Thus, the component of displacement vector in considered layer is given as 
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dd
2 10 ikx

2 1 1 1
W k W k e1 4 eu z x 1 z H z e dk

2 S k 4

∞ χ−χ
−

−∞

 ε −μχμ= × + Ψ − Ψ Ψ 
π μ  
 . (6.13) 
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This integral’s value depends simply on the ‘poles of the integrand’, which located at the roots of the equation. 
 
  ( ) ( )d

11 H k e S k 0χ − φ =  . (6.14) 

 
If the wave velocity along the surface is ,c  then by substituting ckω =  (where ω  represents circular frequency 
and wave number is denoted by k ) in Eq.(6.14), yields to 
 
  , , ,1 1 2P k q Qk P kΨ = = χ =  
 

where  ( ) ( ) .
2 2

1 12 2
5 5G G

1 c 1 cP F C i R
C Cc c

 
= ω − + ω 

 
 


 
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and solving Eq.(6.14), provides 
 

  
( )

( )
tan

2 2
2 1 5 1 2

1
1 5 1 2 1 2

P 4H k C P P
P kH

P C 1 H P H P

μ − μ + μ
=

 − + μ  
. (6.15) 

 
As the value of 2

1P is complex, it can be represented as 
 
  ,1 1 2P k ik= +  (6.16) 
 

where  

/

, ( ) ( ) ( )
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2 2 22 2 2

1 2 1 12 2 2
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2 C C Cc c c

       

  
     = ω − + ω ± ω −          


 (6.17) 

 
Thus, by Eq.(6.16), the dispersion Eq.(6.17) for shear waves, changes to 
 
  ( )tan ,1 2 r ik ik kH A iA+ = +  (6.18) 
 

where  
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   (6.19) 
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As 2k is small, so we have 
 

  ( ) tantan
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1 2
1 2 r i

2 1

k kH ik khk ik kH A iA
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. (6.20) 
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So, by making use of equations (6.19), (6.20) and separating the imaginary and real components of Eq.(6.18), 
yields to two real solutions 
 

  ( ) .tan , tanr
1 2 r 2 1 i

i 2

Ak kH k kH A k kH k kH 1 A
1 A k kH

= + =
−

 (6.21) 

 
Since, the real component of Eq.(6.15) provides the shear wave dispersion equation for shear waves which is 
given by 
 

  tan r
1

i 2

Ak kH
1 A k kH

=
−

. (6.22) 

 
7. Particular case 
 
 By substituting the value of 1H 0=  in Eq.(6.14), the classical dispersion relation is derived for shear 
waves in a FSPL which is transversely isotropic lying above a non-homogeneous substrate which is consistent 
with the results previously derived by Konczak [10]. 
 

  
( )

tan( )
2 2

2
1 2

5 1 5 1

q q 4
k ik H

C 2C

+ + Ψμχ μ+ = =
Ψ Ψ

.  (7.1) 

 
8. Numerical results and discussions 
 
 This work aims to examine the impact of irregularity in the FSPL which is transversely isotropic and 
to conduct a numerical comparison of the different values of wave number and the phase velocity.  
 

 
 

Fig.2. Dispersion curves q 0=  and for the ratio / . , . , . , .1H H 0 05 0 10 0 15 0 20=  with initial stress . .P 1 2=  
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Fig.3. Dispersion curves for q 0=  and the ratio / . , . , . , .1H H 0 05 0 10 0 15 0 20=  with initial stress . .P 1 4=  
 

 
 

Fig.4. Dispersion curves for q 1=  and the ratio / . , . , . , .1H H 0 05 0 10 0 15 0 20= with initial stress . .P 1 2=  
 



102  Impact of triangular irregularity, material heterogeneity and… 

 
 

Fig.5. Dispersion curves for q 1=  and the ratio / . , . , . , .1H H 0 05 0 10 0 15 0 20= with initial stress . .P 1 4=  
 
With the elastic constant values provided by Gubbins [30] and Kończak [10], MATLAB is used to generate 
the graphs for various inhomogeneity parameter q  values demonstrating how phase velocity (dimensionless) 
drops with respect to raise in the value of wave number. 
 
9. Conclusions 
 
 In this work, the shear wave behaviour in a FSPL exhibits transverse isotropy lying over a non-
homogeneous isotropic half space characterized with triangular irregularity at the layer-half space interface is 
investigated. Using Eringen and Samuels [28] perturbation method, the displacement vector components 
within the layer were derived, leading to the formulation of the dispersion relation for this complex medium. 
The dispersion equations, considering both the presence and absence of the triangular irregularity, were then 
analysed graphically using MATLAB simulations. The influence of material’s inhomogeneity and initial stress 
on the dispersion curve is evaluated and shown graphically, focusing on dimensionless wave number and 
dimensionless phase velocity for both cases of homogeneous half-spaces and non-homogeneous half-spaces. 
Based on the above discussions, it can be concluded that: 

• the phase velocity of the shear waves in FSPL exhibits transverse isotropy falls as the wave number 
raises when the FSPL is situated over an elastic half-space characterized with triangular shaped 
irregularity. 

• phase velocity depends on depth of irregularity, wave number, and width of the layer. 
• figures 2-5 demonstrate that the phase velocity drops as the ratio of the layer's height to the depth of 

the irregularity raises. 
Overall, the study demonstrates that a triangular irregularity has a substantial impact on shear wave behaviour 
in a FSPL exhibits transverse isotropy. In addition to the irregularity's shape, factors such as wave number, the 
layer's height to irregularity’s depth ratio, and material properties play a crucial role in determining phase 
velocity. These findings provide valuable insights into wave behaviour in complex layered geological 
structures, with potential applications in fields like geophysics, civil engineering, and material sciences. 
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Nomenclature  
 
 c  – common wave velocity 
 GC  – velocity of shear waves 

 mC  – material constants used in porous layer for , ,.....,m 1 2 8=  

 d  – distance of source creating irregularity 
 FSPL – fluid-saturated porous layer 
 1H  – irregularity’s maximum depth 

 k  – wave number 
 1M  – initially stressed transversely isotropic FSPL 

 2M  – non-homogeneous elastic half-space 

 P  – initial stress 
 2s  – irregularity’s maximum width 
 jU  – displacement vector component for fluid in medium 1M  

 ju  – displacement vector component for solid in medium 1M  

 ijδ  – Kronecker delta 

 ,λ μ  – Lame’s constants 

 ρ  – density of medium 1M  

 , ,11 12 22ρ ρ ρ  – mass coefficients 

 ijσ  – stress tensor components per unit area in medium 1M  

 ω  – angular velocity 
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