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This study focuses on the modeling and simulation of shallow water flows in a channel through the application 
of the Saint-Venant equations. Two main approaches were explored: an analytical solution and a numerical method 
based on finite difference discretization. The analytical solution provides exact expressions for water depth and 
velocity under simplified conditions serving as a benchmark for validating numerical simulations. The numerical 
method, on the other hand, captures more complex dynamics such as wave propagation and nonlinear interactions 
between sections of the channel. The simulations reveal an inverse relationship between water depth and flow 
velocity, confirming the validity of the governing equations. Moreover, the influence of parameters such as channel 
slope, flow rate, and boundary conditions on the systems dynamics is clearly illustrated. The comparative analysis 
of the two approaches shows that the finite difference method is a powerful tool for practical applications in 
hydraulic engineering, allowing for the accurate modeling of real-world phenomena while offering greater 
flexibility compared to idealized analytical solutions.  
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1. Introduction 

 
 Modeling shallow water flow is a crucial topic in fluid mechanics, particularly in civil and environmental 
engineering applications [1-11]. The ability to simulate and predict flow behavior in shallow environments such 
as rivers, lakes, estuaries and artificial channels is essential for the design and management of water infrastructure, 
flood forecasting, sediment transport and coastal engineering. Over the past decades, many researchers have 
contributed to the advancement of analytical and numerical methods applied to shallow water flows. The 
modeling of shallow water flows flows [1-4] and [5] is based on the Saint-Venant equations, first formulated in 
the 19th century. These equations describe the conservation of mass and momentum in shallow water systems 
through a set of hyperbolic partial differential equations. Saint-Venant’s pioneering work laid the foundation for 
future hydrodynamic models, which were refined and adapted for various environmental and engineering 
applications. For example, R.J. LeVeque [6] explored the use of finite difference methods to solve these 
equations, highlighting the efficiency and accuracy of these techniques when applied to shallow water systems. 
LeVeque’s work [7] showed that finite difference methods could effectively deal with both steady and transient 
flow conditions, making them an ideal solution for a wide range of hydrodynamic problems. 
 Abbott and Basco [8] contributed significantly to the field by studying finite element and finite volume 
methods, both widely used in the simulation of complex fluid dynamics. Their research highlighted the 
advantages and limitations of these numerical methods, showing that different approaches may be better suited 
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to specific types of flow problems. For instance, finite element methods are often preferred for irregular 
geometries and complex boundary conditions, while finite difference methods excel in problems where the 
computational domain is regular and structured. 
 More recently, García-Navarro et al. [9] introduced advanced numerical techniques integrating 
turbulence modeling, sediment transport, and complex boundary conditions into simulations of shallow water 
flows. These models have played a crucial role in improving our understanding of shallow water systems under 
natural and human influences, such as storm surges, dam breaks, and urban flooding. The work of Madsen et 
al. [1] further expanded these capabilities by incorporating adaptive mesh techniques, allowing numerical 
models to dynamically adjust the resolution of the computational grid, thereby increasing accuracy without 
significantly raising computational costs. 
 This report builds on these foundational contributions by developing a robust framework for modeling 
shallow water flow through both analytical and numerical solutions. Emphasis is placed on solving the 
governing equations of shallow water flows using finite difference discretization and analytical function 
representation, providing a comprehensive analysis of flow behavior in a defined channel. This dual approach 
allows for a more detailed understanding of the physical processes involved and facilitates the comparison of 
results from different methodologies. 
 In this paper, we investigate classes of exact solutions for the SW equations [8]. In section 2 , we 
present the shallow-water model. In section 3 , we use the change of variables transforming the SW model 
into the ordinary differential equations (ODEs) to obtain the analytical solution. In Section 4 , the proposed 
numerical method to study the influence of physical parameters. Key results and observations are presented in 
section 5 . Then follows conclusion in section 6 .  
 
2. Shallow water model  
 
 The starting point of our study is the shallow-water (SW) equations governing one-dimensional flow 
down open channels with transversal rectangular section: 
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,H V  stand for the variation of water height and fluid velocity above the channel bed respectively; the 

functions ,V H  satisfy the initial and boundary conditions 
 
  ( ) ( ) ( ) ( ), , | , , | , | ,0 0 t 0 0 0H t t 0 H t H V t V t Vξ= = ξ=ξ ∨ = = ξ = ξ ∨ = ξ ∨ =      ;0 0H V const=  
   (2.2) 
  ( ) [ ] [ ], , ; ,t 0 L 0 T Lξ ∈ ×  is the channel length. 
 
3. Analytical solutions 
 
 In this section we provide analytical solutions to shallow-water equations. We assume the solutions  
belong to the space of functions that are continuously differentiable with respect to ( ),tξ  on [ ] [ ], ,0 L 0 T×  i.e. 
shortly denoted here by: 
 
  ( ) [ ] [ ]( ) ( ) [ ] [ ]( ), ,

, ,, , , , , , , .1 1 1 1
t tV t C 0 L 0 T H t C 0 L 0 Tξ ξξ ∈ × ξ ∈ ×   (3.1) 
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Consider the following change wz C t= − + ξ  and ( ) ( ) ( ) ( ), , ,V z V t H z H t= ξ = ξ  where wC  is the speed of 
propagation of the roll waves [5]. Let’s state with the following result. 
Theorem (3.1).The solutions ,H V  of the system (2.1) satisfying the conditions (2.2) are defined by the 
functions 
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and the fluid flow down the channel can be computed as: 
 
  ( ) ( )( ) ( ), , ,0 0Q t b h H t V tξ = + ξ ξ , (3.4) 
 
where ,H V  are the solutions of the system and wz C t= ξ −  with wC−  the speed of propagation of the roll 
waves. 

Proof  (3.1). Let transform the system (2.1) into the linear form: As known 
2

tp 2
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K

=  where Q  value of the 

fluid flow and K  the module of the fluid flow in the section denote by ;H VΔ Δ  the variation of the height and 
the velocity respectively. From the hydraulic we can write: 
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from (3.6) and (3.7) we obtained 
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Using this calculation, (2.1) give  
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In this manner, a system of linear differential equations pertaining to the variation in water height hΔ  and 
velocity VΔ  is derived. Some coefficients involved in this system (3.19) are morphological parameters of the 
channel (for example, io), while others can be estimated as a function of a variable. Considering that in many 
cases, control over the channel’s operating regime is achievable solely through water height, let us determine 
the expression of the coefficients in system (3.19) as a function of 0H : Flow depth in an undisturbed regime. 
For this purpose, coefficients are concurrently defined for rectangular channels with bottom width B . The 
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wetted cross-sectional area is denoted as ,0 0S S H H= = . The relationship between the permanent water flow 
velocity 0V  and the height 0H can be established based on the condition o tpi i= .  

It is known that 
2

0
tp 2

Vi
C R

=  where C  is the Chézy coefficient ( )/ ;1 2m s R  is the hydraulic radius ( )m ; thus, 

 
  .0 0V C i R=   (3.20) 
 

The Chézy coefficient C  is expressed as ,
1
61C R

n
=  where n  is the coefficient of wall roughness. 

The hydraulic radius R  for the rectangular channel is expressed as 
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By inserting the expression of R  into equation (3.20), we obtain for the channel: 
 

  

2
302

0 3
0

0

H
i BV B Hn 1 2

B

 
 

=  
 + 
 

. (3.22) 

 
Expressing the coefficient x in terms of the water height entering the system (3.19), a hydraulic parameter of the wall, 
regardless of the shape of the wetted cross-section (liquid), as proposed by (V.T Chow, [12]) is given by the formula: 
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where γ  represents the wetted perimeter, which is expressed as 0B 2Hγ = + . By incorporating the obtained 
ratio below into equation (3.23) and applying the requisite derivative, we obtained 
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Hence, all coefficients of the system of linear Eq.(3.19), which describe gradually varied or steady flow, are 
directly expressed as functions of 0H . We must now solve this new linear system obtained by introducing the 
change of variable wz C t= − + ξ  ( ) ( ) ( ) ( ), , ,V z V t H z H t= ξ = ξ .  
The analytical solution focuses on deriving the water depth ( )H  and velocity ( )V  as functions of time and 
space, based on initial conditions and flow parameters. The derived equations demonstrate the relationship 
between discharge ( )Q , water depth ( )H , and channel slope. The analytical solution is particularly useful for 
providing exact solutions under simplified conditions, serving as reference points for validating the accuracy 
of numerical models. 
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 The process begins by linearizing the Saint-Venant equations, assuming small perturbations around a 
steady-state condition. Using standard techniques such as separation of variables and the method of 
characteristics, the governing equations are reduced to a set of solvable ordinary differential equations. The 
final expressions for water depth and velocity are obtained in terms of known parameters, including the channel 
geometry, slope, and initial flow conditions. 
 Python-based algorithms are used to compute the analytical solution at discrete time intervals, allowing 
the visualization of water depth and velocity profiles along the channel. These profiles provide insight into the 
dynamic behavior of shallow water flows, highlighting the influence of channel geometry, discharge, and 
external forces on the movement of water. 
 
4. Numerical study of the system  
  
 Equations (3.2)-(3.4) express the relationship between the depths of the current in different  sections 
and the distances between these sections and a conventional origin H0. They establish the  connection between 
the variables ( ),H tε  and ( ),z tε . Equation (3.2) can be transcribed as follows: 
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Using this expression, (3.3) becomes:  
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with ( ) ( ) wu z V z c= − : being the velocity at distance ( ), , :0 0 wz t u V cε = −  the average velocity of the liquid, 
M : the specific kinetic energy, and ( ) :c uE  the kinetic energy for the average velocity. 

 The kinetic energy of a particle with mass mm moving at velocity ( )u z  will be 
2mu

2
, and for the 

entire flow within the given section S , the total energy will be the summation of such kinetic energies: 
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The energy calculated for the average velocity 0u  within the current section 
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If we assume that 0u u u= ± Δ , after the transformations, we obtain: 
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This implies that ( )c c 01 E E uα > ∨ > . Equation (4.6) represents the kinetic energy coefficient as follows: 
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which is the Coriolis coefficient.  
So that, considering (3.2), we can transcribe equality (3.3) as follows: 
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where the coefficient *α  for straight turbulent currents is equal to . / .0 05 0 10 . 
 In other cases, the value of the coefficient *α  may be significantly larger. 
Equations (3.2) and (3.3) provide the analytical solution as well as the initial condition in implicit form. 
Solving the implicit equation (3.3) is done by plotting the characteristic curve *   wz c t= − + ε from the initial 
conditions u  such that: 
 
  .2uu e 1 2z−+ − =   (4.10) 
 
For the simulations, a length z equal to 50m is taken, and the boundary condition for z 0=  is provided. 
 The solution (Fig.1) depicts the evolution of the free surface from an initial height 0H  to the level 

( )H z , showing that when u  is negative and close to 0 , the initial head decreases in favor of kinetic head, 
which increases with velocity and consequently with z . As u increases, the extent of the water line z  decreases 
abruptly to reach a minimum level ( ). for .minz 0 77 u 0 34= − =  before slowly rising again. Adanhounme and 
Codo [2] also observed a decrease in water depth with distance under similar inclined flow conditions. They 
showed that in channels with steeper slopes, the reduction in depth is more pronounced, which is corroborated 
by our results. However, in Ball’s [4] work on paraboloidal geometries, the dynamics are different due to 
rotational effects, where the observed waves increase with distance in certain configurations, contrary to the 
decrease observed in our figures. 
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Fig.1. Evolution of the free surface ( )z u . 
 
 The water level ( )H  represents the flow depth at a given point in the channel at various times (see 
Fig.2). This depth is influenced by factors such as the channel slope, cross-sectional area, and gravitational 
forces governing the flow. Based on the presented curves, we observe a gradual variation in H  along the 
channel, with fluctuations corresponding to wave propagation within the channel. This indicates a transient 
flow influenced by hydraulic conditions such as slope and wall roughness. 
 

 
 

Fig.2. Water level ( )H  and velocity ( )V  curves at different times. 
 
 The flow velocity ( )V  corresponds to the amount of water displacement per unit time at various points 
along the channel. It is governed by the channel’s slope, friction losses, and flow depth. The velocity profile 
evolves over time, indicating transient flow behavior. The evolution of V is associated with friction losses and 
depth variations. An initial acceleration followed by deceleration suggests that the system is influenced by 
kinetic energy dissipation through interactions with the channel bed and side walls. 
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 The variations in water level ( )H  over time reveal a progressive evolution of wave height, typical of 
transient flow models. These results align with the work of Chow et al. [2], which exhibited similar profiles in 
non-uniform channel flows. The studies by Saint-Venant [13] and Madsen and Sørensen [14], which employed 
shallow water wave equations, demonstrated that water height in a channel depends on the slope and bed 
characteristics. The results obtained in the present work are consistent with these studies, especially concerning 
wave propagation in unsteady systems. 
 The velocity curve ( )V  varies over time and distance, influenced by the hydraulic gradient and 
friction. The velocity reaches an initial peak and then gradually decreases, reflecting transient flow conditions. 
Madsen and Sørensen [14] observed similar behavior, with a rapid increase in velocity followed by 
stabilization. The velocity variations in the current model are consistent with their findings, though the 
maximum velocities observed here are slightly lower, likely due to the relatively low slope ( .0 1 ) of the channel 
used in this study. 
 

  
Fig.3. Water level ( )H  and velocity ( )V . Fig.4. Water level curve ( )H  curves at different times. 

 
 This Fig.3 shows the water level at a given time along the length of the channel. The results depict a 
profile following an oscillating trend, where the water rises and falls due to wave propagation and frictional 
forces. The works of Chow [12] and Dingman [15] on open-channel flow have demonstrated that water level 
variations are strongly influenced by the channel’s cross-sectional geometry and the initial flow conditions. In 
the present study, the channel depth and friction similarly affect water level fluctuations, aligning with their 
findings. If the channel slope or friction were higher, as noted in some of Hervouet’s [16] studies on numerical 
flow modeling, we might observe more pronounced peaks in the water level. 
 Figure 4 shows that velocity varies along the channel’s length. The velocity decreases at certain points, 
indicating a transition between faster and slower flow regimes, influenced by depth and frictional losses. The 
works of Saint-Venant and the numerical simulations of LeVeque [17] also demonstrate a gradual decrease in 
velocity as waves propagate through the channel, particularly in cases with a low slope, as seen in the present 
simulation. The results align with these observations, although a steeper slope in some cases would have 
produced higher velocities. 
 The studies by Bellos and Salingaros [18], which examined flows in high-slope channels, reported 
higher velocities and faster transitions in velocity variation. The results obtained in this work, with a moderate 
slope of .0 1  are more suited to low-slope channels, which explains the lower velocities observed. Referring 
to critical parameters, the main variables influencing the results are the channel slope ( .0 1 ), the initial water 
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level ( .1 5 m), and the friction coefficient (equal to .0 03 ). These values correspond to typical hydraulic studies 
on shallow channels, but variations in these parameters would have led to different results, particularly in the 
observed maximum velocities. 
 In summary, the results are generally consistent with previous studies. The Saint-Venant equations and 
modern numerical models (Chow [12], Madsen and Sørensen [14]) confirm that the water level and velocity 
profiles follow expected trends. The moderate slope and frictional losses temper the observed velocities, unlike 
studies with steeper slopes or smoother channels. 
 In order to analyze the problem, we choose to non-dimensionalize Eqs (3.2) and (3.3). 

Referring to basic concepts of hydraulics, we have: s bH=  and b 1
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This expression leads, after some calculations, to: 
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Equation (4.22) represents an implicit function ( ) ( )*wh z h c t= − + ε , parametrized by , 0
r

HF
b

 and 0i .  

Let’s examine the variations of h  with respect to z  for different parameter values. 
 

 
 

Fig.5. Influence of the Froude number rF  on the flow height. 



42  Analytical and numerical modeling of shallow water flow in a… 

 
The variation of the Froude number leading to a regime change imposes a torrential regime at the inlet and a 
fluvial regime at the outlet. The function defining the water height undergoes a regime change via a hydraulic 
jump halfway through the transition zone (Fig.5). Additionally, it is observed that the height decreases with 
increasing z and depends on the value of the initial height. For the same water height value ( )H constant= , 
z increases with increasing 0H , and z  grows more rapidly when 0H  is high. 
 

Variation of initial water height 0H b  Variation of morphological  

  
Fig.6. Influence of the variation of initial water height 

0H b . 
Fig.7. Influence of morphological parameters 0i  

on the flow height. 
 
Figure 6 shows that changes of the initial water height 0H b  affect the flow height h. The flow height decreases 
rapidly as z  increases, then stabilizes at a constant value. 
The value of H , a function of z , decreases more rapidly with a steeper slope than with a gentler slope, which 
results in a more extended z (Fig.7). 
The initial slope 0i  (Fig.7) significantly affects the flow height, with steeper slopes generally leading to faster, 
shallower flows, while flatter slopes can result in slower, deeper flows. 
 Analytically, the relationship is governed by fundamental principles of fluid mechanics, influenced by 
both gravitational forces and frictional resistance from the channel or surface. Between z 500=  and z 1500=  
(Fig.7), the value of h decreases rapidly and tends toward a limit height of 

.
lim.h 5= , regardless of the value of 

the morphological parameter 0i . From z 1500=  to infinity value, h  remains unchanged and retains this limit 
value. These observations indicate that neither the morphological parameter 0i nor z  influence the flow height 
h . The fluid flow velocity depends on the Froude number rF . An increase in the value of rF leads to a decrease 
in velocity, in line with theoretical values reported in the literature (Fig.8). It is also noted that an increase in 
flow height h does not affect the fluid velocity. Although the analytical solution provides valuable insights, it 
is often limited to idealized scenarios. For real-world applications, more complex and accurate models are 
required. For this purpose, a finite difference discretization of the shallow water flow equations has been 
developed. The finite difference method was chosen for its simplicity and efficiency in solving hyperbolic 
partial differential equations on structured grids. 
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 The discretization process begins by dividing the computational domain (the channel) into a series of 
discrete points or grid cells. The governing equations are then approximated at each grid point using finite 
differences for the temporal and spatial derivatives. Specifically, a forward difference is applied for time 
integration, and a centered difference is used for spatial derivatives, ensuring second-order accuracy in space. 
 The Python code developed for this method iterates at each time step, updating the water depth and 
velocity at each grid point based on the current state of the system. Boundary conditions are carefully handled 
to ensure that the physical constraints of the system (such as no-flow boundaries at the channel edges) are 
respected. The results are visualized as time dependent water depth and velocity profiles, which can be 
compared to the analytical solution to evaluate the accuracy of the numerical model. 

 

 
 

Fig.8. Variation of fluid velocity. 
 
5. Key results and observations 
 
 Analytical and numerical models provide complementary insights into the behavior of shallow water flow 
in a channel. The analytical solution confirms the expected behavior of the system under idealized conditions, while 
the numerical model is capable of capturing more complex dynamics, such as the evolution of flow patterns over 
time and the impact of nonlinear effects. Numerical simulations reveal several important trends: 
 As expected, an increase in flow rate results in a proportional rise in water depth, as governed by the 
continuity equation. However, the numerical model captures additional details, such as wave development and 
interactions between different sections of the channel. 
 The flow velocity increases with the channel slope and decreases as water depth increases. This inverse 
relationship between water depth and velocity is consistent with the conservation of momentum and is 
accurately captured by both models. 
 The numerical model also captures wave propagation along the channel, which is not easily predicted 
by the analytical solution. This highlights the importance of numerical methods in studying real fluid dynamics, 
where nonlinear effects and external forces play a major role. 
 
6. Conclusion 
 
 The comparative analysis between analytical and numerical solutions for shallow water flow highlights 
the strengths and limitations of each approach. The analytical solution offers an exact representation of flow 
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under idealized conditions, serving as a benchmark for numerical validation. However, it is constrained by 
assumptions of linearity and simplicity, limiting its applicability to real-world problems.  
 On the other hand, the numerical model based on finite differences offers a more flexible and powerful 
framework for simulating complex flow dynamics. It is capable of handling nonlinear effects, such as wave 
propagation and interactions between different sections of the flow, which are not easily captured by the 
analytical solution. Python-based simulations provide accurate and efficient solutions for real-time and large-
scale applications, making the numerical model a valuable tool for engineers and hydrologists. 
 The results obtained in this study confirm that shallow water flow can be effectively modeled by 
combining analytical and numerical methods. The finite difference method, in particular, proves to be a robust 
and efficient tool for simulating shallow water dynamics in channels. The accuracy of the numerical model is 
validated by comparison with the analytical solution, and the results align with the expected physical behavior 
of the system. 
 In conclusion, this study contributes to the ongoing development of shallow water flow modeling 
techniques by providing both theoretical insights and practical tools for simulation. Future work could focus 
on extending the model to include additional factors such as sediment transport, turbulence, and 
multidimensional flow fields. These improvements would further enhance the accuracy and applicability of 
the model, making it a valuable resource for both academic research and practical engineering applications. 
 Future studies could incorporate sediment transport, turbulence, and multidimensional flow fields to 
improve the model's accuracy and applicability. 
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Nomenclature 
 
 wc  – the speed of propagation of the roll waves 
 H  – stand for the variation  
 L  – is the channel length 
 v  – water height and fluid velocity 
 x  – is the hydraulic exponent 
 α  – for straight turbulent currents 
 *α  – straight turbulent currents 
 γ  – represents the wetted perimeter 
 ε  – is spacial variable  
 ρ  – fluid density  
 oρ  – being the constant pressure on the free surface 
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