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The main aim of this research is to investigate the effects of Brownian motion and thermophoresis on an MHD 
hyperbolic tangent Williamson-Casson nanofluid passing over a stretching sheet. Through appropriate similarity 
transformations, non-linear partial differential equations governing the model can give rise to non-linear ordinary 
differential equations. These equations are solved numerically using the Keller-Box method. The quantities related 
to engineering aspects, such as skin friction, Sherwood number, heat exchange and the various effects of quantifiers 
on momentum, temperature, and concentration are illustrated with examples for better understanding. For the sake 
of accuracy, the computational resolution of this research is limited to the published data and is derived from the 
Keller-Box approach. Heat exchangers, chemical reactors, and thermal management systems are just some of the 
technological applications for which the study's conclusions may have broad implications. Skin friction increases 
with Casson and Williamson parameters. For both the fluids, mass transfer is accelerated with Brownian effect 
while heat transfer decelerates with thermophoresis effect. The combination of Casson-Williamson characteristics, 
hyperbolic tangent fluid dynamics and MHD provides a novel way of understanding non-Newtonian fluids in the 
presence of magnetic fields.  
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1. Introduction 
 

 There are many areas of research and development that involve the study of the stretched flow of 
electrically conducting materials, including plasma research, nuclear power plants, petroleum exploration, and 
the extraction of heat-trapping energy sources. In addition, there are many technical processes that can be used, 
such as melting, extrusion, manufacturing of glass fibers, heated rolling wire, the creation of rubber and plastic 
sheets, and cooling of the vast metallic plate inside an environment that could be an electrolyte, which involves 
the movement of a stretch surface. When producing the filaments and polymer sheets, they are often extruded 
by a windup roller that is situated in a die a certain distance away. The flow that flows through a stretching 
was investigated by Crane [1]. Cortell [2] analyzed non-Newtonian fluid flow on stretching surfaces and 
employed the shooting technique to come up with a numerical solution to the equation that governs it. Ahmed 
et al. [3] investigated the convective movement in MHD Jeffrey fluid on an extended surface. Imran Anwar et 
al. [4] solved the chemical reaction that occurs on the MHD nanofluid and heat flow across the stretched sheet. 
Heat conductivity, viscosity, and heat transfer processes in nanofluids were reviewed by Noorzadeh et al. [5]. 
The study of magnetic fields and non-Newtonian fluids has attracted much attention because of their massive 
applications in science and technology, such as blood flow measurement methods, turbomachinery and nuclear 
accelerators, as well as heat exchanger design and many related fields. MHD influences on non-Newtonian 
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liquids passing through a plate that is moving were studied by Naikoti and Shashidar [6]. Saritha et al. [7] tried 
to inspect the effects of different variables in the non-Newtonian MHD flows via a porous medium that is 
dynamically changing. Asogwa and Ibe [8] gave an analysis of the MHD Casson fluid flow across a permeable 
stretched surface with mass and heat transfer. 
 Recent research has focused on the study of nanomaterials. This is because of their widespread use in 
electronics and manufacturing, as well as in medicine and transport. A modern type of fluid, known as a 
nanofluid, is a fusion of a fundamental fluid with particles of nanotechnology. These nanoparticles consist of 
a variety of metals, such as copper, silicon, and aluminum. Since the majority of fluids for heat transfer, like 
oil, water, ethylene glycol, or motor oil, have naturally low conductivity, conventionally, base fluids can have 
their thermal conductivity enhanced by adding nanoparticles Khan and Pop [9] examined the movement of a 
nanofluid's boundary layer through the stretched sheet. Kuznetsov and Nield [10] inspected the convection 
flow of a nanofluid over an elongated vertical plate. Mabood et al. [11] developed an algorithmic model of the 
MHD boundary layer and heat transfer in nanofluids on a non-linear stretching sheet. 
 The importance of thermal radiation effects and MHD flow issues in basic manufacturing has also 
increased. Electricity generation, solar power, astrophysical flow technologies, spacecraft re-entry and a 
variety of other industrial applications all have a similar flow. As the thermal radiation parameter increases 
and the temperature of the fluid rises rapidly, there will be more fluid in the boundary layer due to buoyancy 
effects. So this is a way of making the fluid move faster. Akolade et al. [12] illustrate how thermophysical 
characteristics, including chemical and radiative impacts, affect the MHD flow of Casson fluid. Sheikholeslami 
et al. [13] investigated the impact of heat and radiation on MHD free convection of Al2O3-H2O nanofluid. 
SitiKhuzaimah et al. [14] studied the movement of a boundary layer of hydromagnetic energy across a 
stretched area exposed to heat radiation.  
 Williamson fluids are non-Newtonian liquids that exhibit thinning of shear (i.e., the viscosity decreases 
as the rate of strain increases). Hayat et al. [15] analyzed the 2D MHD flowing of a Williamson nanofluid on a 
thickened, nonlinearly fluctuating surface that has melting transfer. Khan et al. [16] explored the MHD flow of 
a Williamson nanofluid on cones and plates with chemicals that react. Malik et al. [17] examined the MHD of a 
hyperbolic, tangentially oriented fluid moving via a stretched cylinder by the Keller-Box technique. Akbar et al. 
[18] showed how a hyperbolic stream flows from a magnetic-hydrodynamic boundary to a stretched sheet by 
using numerical solutions. With fluctuating viscosity and heat conductivity effects, Idowu et al. [19] looked over 
the MHD heat and mass transfer flow of Casson fluid. Gbadeyan et al. [20] investigated the effects of altered 
heat transfer efficiency and viscosity on the Casson nanofluid flow coupled with convective heat and velocity 
slip. Many investigators [21-24] presented the effects of several factors on Casson nanofluid flows. 
 Chemical reactions can have various applications in the industry. Chemical reactions can be used to 
reuse products, produce lubricant, and create different compounds that could be beneficial to industry. Mabood 
et al. [25] studied the stretched-sheet MHD stagnation flow as well as heat transfer using chemical reactions 
and transpiration. Hayat et al.[26] discussed the convection-mixed flow of chemically reactive Casson 
nanofluid that is convectively heated, in addition to heat production and absorption on a stretched 
sheet.  Moving across a stretched sheet, the boundary layer flow of an MHD tangent hyperbolic nanofluid was 
numerically solved by Khan et al. [27]. Reddy C et al. [28] examined the transport of heat and flow 
characteristics of the Williamson nanofluid over an adjustable stretching sheet thickness and thermal 
conductivity. Nadeem and Hussain [29] analyzed the Williamson fluid’s heat transmission over an 
exponentially stretched surface. Li et al. [30] Muzara and Shateyi [31], Zhu et al. [32] illustrated the heat 
transfer of Williamson fluid flows.  
 Two different non-Newtonian fluid systems are used to describe the rheological nature of certain 
fluids: Casson and Williamson fluids. The fluid flow properties are highly dependent on the governing fluid 
parameters used in these models. Chemical reactions and heat radiation's effect on the MHD of a Casson and 
Williamson nanofluid flowing across a porous stretched sheet are investigated by Humane et al. [33].  
 Numerous fields rely on tangent hyperbolic nanofluids for effective heat transfer, including energy 
and power generation, electronics and microelectronics, biomedical engineering, industrial systems, and many 
more. The impact of different parameters on tangent hyperbolic nanofluid flows was investigated by several 
researchers [34-39]. Pattnaik [40] studied the radiative and dissipative heat effect on the Williamson nanofluid 
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flow due to thermal buoyancy. Influence of various parameters on nanofluid were discussed by the several 
authors [41-43]. Yousef et al. [44] studied Casson-Williamson nanofluid movement across a slick extended 
sheet through a porous material. Free convection of conducting nanofluid with heat source was investigated 
by Baag [45]. Several studies [46-48] illustrated the studies related to Hybrid nanofluid. Anwar et al. [49] 
demonstrated the two-dimensional fluid flow that contains nanoparticles with MHD hyperbolic tangents to the 
stretching sheet.  
 Enhanced thermal management, fluid flow efficiency, and accuracy in small-scale systems are just a few 
of the many practical applications that benefit greatly from a solid grasp of the tangent hyperbolic nanofluid flow 
geometry and its implications for heat transfer behavior. The current work, which aims to understand the 
boundary layer flow of hyperbolic tangent Williamson-Casson nanofluid across a stretched sheet, is motivated 
by the previously described research. Further details and motivations are given in the next section. 
 
2. Model formulation 
 
 Let us consider a tangent hyperbolic nanofluid that flows continuously and is incompressible inside a 
2D- boundary on a sheet that is stretched linearly with a surface that is the y 0=  point and the velocity in the 

range of Wu ax= . The fluid flow is in a vertical direction in relation to the magnetic fields with a force of 2
0B  

and occurs within the region where y 0> . Since it is likely that the Reynolds number is small, the magnetic 
field also appears to be small. On the extending surface, we assume that the wall temperatures wT   as well as 
the nanoparticle percentage of WC   are both constant. The temperature as well as the proportion of 
nanoparticles in the air are represented by the letters T and C, as the y value is infinity.  
To have a graphical benchmark, Fig.1 presents the physical model and coordinate system. 
 

 
 

Fig.1. Physical model and coordinate system [50]. 
 
The mathematical model based on boundary layer assumptions (Haq et al. [23]) is provided below. 
 

  u v 0
x y

∂ ∂+ =
∂ ∂

, (2.1) 
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, (2.2) 
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The required boundaries are given by  
 
  , ,: ,  w w w wy 0 u axandv v T T C C→ = = = =  
   (2.5) 
  .: , ,  y u 0 T T C C∞ ∞→ ∞ = = =  
 
The boundary conditions at y 0=  show a wall with a constant concentration, a constant temperature, and 
varying velocity in x-direction. These conditions indicate a forced or shear-driven convection process with 
wall-fixed mass and thermal characteristics. As y approaches infinity, the vertical velocity stops being a 
function of y, and the temperature and concentration are close to constant values, suggesting that the free-
stream fluid is homogeneous and unaffected by the wall at long distances. 
In order to reduce the model equations to a dimensionless form, these transformations are defined on the basis 
of the methodology of (Akbar et al. [18]): 
 

  ay
v

η = ,      ( )a xfΨ = ν η ,      ( )u axf= ′ η , 

   (2.6) 

  ( ) ( )θ η , 
w w

T T C C
T T C C

∞ ∞

∞ ∞

− −= φ η =
− −

 

 

where u
y

∂Ψ=
∂

,    v
x

∂Ψ= −
∂

.  

Substituting Eq.(2.6) into Eqs (2.1)-(2.4), we obtain: 
 

  ) 2 211 n nWef f f ff M f 0′  +′′ ′′ ′ ′− + + − − = β
′ ′

 
, (2.7) 

 
  ( 2Pr f Nb Nt 0′θ + θ + +′ ′ ′ ′φ θ θ =′ , (2.8) 
 

  NtPrLef 0
Nb

φ + φ +′ ′ ′′θ =′ . (2.9) 

 
The modified boundaries are 
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where the prime denotes differentiation with respect η .  
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The Sherwood number, Nusselt number, and local skin friction, which are of particular relevance and 
significance, are indicated as: 
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With the use of scaling variables, these quantities are modified as: 
 

  ( ) ( )
/1 2

x fx 3Re C 1 nWe1 n f 0 f 0
2 2

 = − + − β
′′ ′′

 
, 

   (2.14) 
 
  ( )/1 2

x xRe Nu 0= − ′θ ,     ( )/1 2
x xRe Sh 0= − ′φ  

 
where   /x wRe xu v=       is Reynold number. 
 
Following the methods outlined by (Anwar et al. [49]), Keller-Box method–which includes the finite 
differences method, Newton's scheme, and the block elimination process–makes sense of the converted non-
linear ordinary differential equations in Eqs (2.7), (2.8), and (2.9), and boundary conditions in Eq.(2.10). This 
approach has been widely used and seems to be more adaptable than other methods. It is said to be more 
efficient, less time consuming, easier to program and easier to practice. 
 
3. Solution methodology 
 
 Due to the non-linearity of Eqs (2.7), (2.8), and (2.9), it can be difficult to discover a closed-form 
answer. Using the Keller-Box approach, which involves finite differences, equations are solved numerically 
with boundaries in Eq.(2.10). The Keller-Box method [51] generally involves the following steps to obtain 
numerical answers: 
Step 1 
 Applying the substitutions , , , .f p p q t g′ ′ ′ ′= = θ = φ =  
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 All of the ODEs must be transformed into 1st order ODEs in the early stages. 
 
Step 2:  Separation of domain 
 The rectangle grid in x − η  plane is deliberated in Figure III, and the grid points are demarcated as:  

 , , , , , .0 i i 1
ix 0 x x k i 1 2 3 I−= = + = …… , 

 , , , , , .0 j j 1 i0 h j 1 2 3 J−η = η = η + = ……  

where ( ),i jk η are the xandΔ Δη  step length.  
 

 
 

Fig.2. Grid point labelling. 
 
Step  3: Newton's technique of linearization 

 As a consequence of Newton's method, the ( )  thi 1+  iterations of the formulae may be found in the 
preceding equations 

 
  ( )( ) ( )( ) ( )( )   i 1 i i

j j j
+ = + δ  

and after overlooking the higher-elevated bounds of ( )( ) i
jδ  a linear tri-diagonal equation scheme.  

Step 4: The bulk scheme and eliminating 
 The equation F rδ = has finally resulted in a bulk tri-diagonal matrix. 
Where 
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where F is 7 7×  block-sized matrix that corresponds to the size J J× . However,  andrδ  are the vector a of 
order .J 1×  Now an efficient LU factorizing process is applied to solve for δ . In F rδ = , F is splinted into 
lower and upper trigonal matrices, i.e. .F LU=  
The majority of the numbers required are accurate to within 4 decimal places, according to the tables. This is 
made possible through a consistent grid with the width of .0 006Δη =  and a precision of 510− .  
 

 
 
4. Findings and interpretation 
 
 Sherwood number, Nusselt number, and skin friction quantities for a variety of different quantitative 
terms are provided to give a physical insight into this problem. Table 1 represents the deviation of the skin 
friction coefficient with the Hartmann number. Measuring the skin friction force relative to the fluid's dynamic 
pressure yields the skin friction coefficient fC . Note that the skin friction coefficient is directly proportional 
to the Hartmann number. To examine how skin friction changes in response to changes in n, We, β, and M, we 
may look at Tab.2. As the power law index n improves, the skin friction decreases, but as the Hartmann number 
increases, the skin friction improves. The skin friction coefficient accelerates at lower values of the Casson 
nanofluid parameter β, while the opposite relationship is observed for the Williamson parameter We. 
 The effect of various physical variables on mass and heat transfer rates is shown in Tab.3. In contrast 
to Pr, which shows an increasing relationship, the heat transfer rate decreases as Le, β, Nt, Nb, and S are 
increased. The controlling quantitative terms Le, β, Nt, Nb, S, and Pr all have an increasing effect on the mass 
transfer rate. 
 A graphical representation of the effect of controlling fluid properties on Casson and Williamson fluids 
is presented for a clear understanding of the problem. As can be seen in Fig.2, the Hartmann number has an 
effect on the velocity profiles for both Casson and Williamson fluids. The Hartmann number of a fluid is a 
measure of the ratio of its Lorentz force to its viscous force. A high Hartmann number indicates that the fluid 
is slowed down by the magnetic field, which dominates its motion. The consequence is that the velocity of the 
fluid decreases as M increases, as shown in Fig.2. Unlike the Williamson fluid, the Casson fluid is clearly 
found away from the boundary. Figure 3 shows how the power law index affects the velocity. One way of 
quantifying the shear behavior of the fluid is to look at its power law index, n. As can be seen in the figure, the 
velocity decreases as n increases. Therefore, the fluid undergoes a transition from shear thinning to shear 
thickening as n increases. It can be seen from the graph that the power law index has a more significant effect 
on the Casson fluid than on the Williamson fluid. 
 The effect of the Weissenberg number We on the velocity profiles can be seen in Fig.4. The graph 
clearly shows that the velocity profile decreases as the Weissenberg number increases. This is because higher 
values of the Weissenberg number increase the relaxation time of the fluid particles, which in turn increases 
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the viscosity, which in turn decreases the fluid velocity because it creates more resistance to the flow of the 
fluid. Compared to Casson's fluid, this effect is quite minimal in Williamson's fluid. As the thermophoresis 
variable increases, the temperature of the fluid increases, as shown in Fig.5. In fact, the fluid will move from 
the heated region to the cooled region if the thermophoresis quantifier is high enough to exert a strong enough 
thermophoretic force on the particles. 
 The effect of changing the Brownian motion parameter on the temperature is shown in Fig.6 and it is 
clear from the plot that the temperature of the fluid increases as Nb increases. This is due to the fact that when 
the Brownian motion component is large, there is an increase in the ambient temperature of the fluid, as the 
component is subject to a large amount of Brownian motion and may move irregularly independent of the fluid 
flow. The effect of changing the thermophoresis parameter on the final fluid concentration is shown in Fig.7. 
Increasing the parameter causes the fluid concentration to increase, as can be seen from the graph. The potential 
effect of Brownian motion on fluid concentration is shown in Fig.8. The concentration decreases as Nb 
increases, as can be seen in the figure. 
 The influence of the suction/injection variable (S) on velocity, temperature and concentration is plotted 
independently in Figs 9, 10 and 11. It can be seen from these plots that the velocity, temperature and 
concentration fields all decrease as the suction/injection parameter increases. A suction mechanism is used to 
suck a certain volume of fluid particles into the wall. As the suction/injection parameter increases, the 
thicknesses of the momentum, temperature and concentration boundary layers all decrease. 
 The role of skin friction in fluid dynamics is crucial because of its ability to profoundly influence flow 
behavior and energy dissipation rate in various engineering contexts. The consequences of the power-law 
classification of n, β and We on the degree of skin friction versus M are shown in Figs 12 and 13, respectively. 
These graphs illustrate that as M as n, β, and increase, the skin friction improves proportionally with M. Figure 
14 shows the varying values of We and β for the variation of skin friction versus S. As the values of β and We 
increase, the figure clearly shows that skin friction increases with S. 
 Nusselt numbers are dimensionless quantities that quantify convective heat transfer between solid 
surfaces and liquids. Brownian motion and thermophoresis, as shown in Fig.15, can significantly alter the 
Nusselt number. The rate of heat transfer decreases as Nb improves when plotted against Nt for different values 
of β and We. The efficiency of convective mass transfer can be determined by the Sherwood number. For 
several Brownian motion quantifiers, Fig.16 graphically shows the effect of mass transfer with Nt. Obviously, 
increasing the value of Nb speeds up the rate of mass transfer and decreases with Nt. 
 
Table 1. Skin friction coefficient and Nusselt number versus Hartmann number, with β = ∞  and .Pr 1=  
 

M 
1
2

f xC Re−  ( )' 0−θ  

0 1.0005 0.5837 
0.5 1.1182 0.5613 
1.0 1.4142 0.5097 
1.5 1.8028 0.4542 
2.0 2.2361 0.4067 
2.5 2.6926 0.3691 
3.0 3.1623 0.3400 
3.5 3.6401 0.3174 
5 5.0990 0.2733 
10 10.0499 0.2191 
100 100.0050 0.1716 
500 500.0010 0.1676 
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Table 2. Skin friction coefficient and Nusselt number versus n, β, We and M for the fixed values of . ,Nb 0 001=  
, .Pr 1 Nt Le S 0= = = =   

 

n M β We 
1
2

f x
1 C Re
2

−  ( )' 0−θ  

0.0 0.0 ∞ 0.5 1.0005 0.5837 
0.1 0.0 ∞ 0.5 0.9364 0.5711 
0.2 0.0 ∞ 0.5 0.8584 0.5557 
0.3 0.5 ∞ 0.2 0.8926 0.5178 
0.3 1.0 ∞ 0.2 1.0773 0.4627 
0.3 1.5 ∞ 0.2 1.2473 0.4071 
0.3 0.5 10 0.3 1.2813 0.5314 
0.3 1.0 5 0.3 1.4548 0.4911 
0.3 1.5 1 0.3 2.2824  

 
Table 3. Nusselt number and Sherwood number versus Le, β, Nt, Nb, S and Pr for the fixed values of 

.We n M 0= = =  
 

Pr Nb Nt Le β S ( )' 0−θ  ( )0− ′φ  
1.6 0.1 0.1 1.0 ∞ 0.0 0.6953 0.3694 
2.0      0.7732 0.4609 
2.5      0.8492 0.5741 
1.6 0.2     0.6395 0.6042 

 0.3     0.5868 0.6814 
 0.4 0.2    0.5110 0.6563 
  0.3    0.4861 0.6023 
  0.4 2.0   0.4098 1.0775 
   2.5 0.1  0.4696 1.4780 
    0.5  0.4420 1.4009 
    1.0 0.1 0.4806 1.5833 
     0.2 0.5354 1.8154 
     0.3 0.5923 2.0571 

 

 
Fig.2. Impact of M on ( )f ′ η . 

 
Fig.3. Impact of n on ( )f ′ η . 
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Fig.4. Impact of We and β on ( )f ′ η . 

 
Fig.5. Impact of Nt on ( )θ η . 

 

 
Fig.6. Impact of Nb on ( )θ η . 

 
Fig.7. Impact of Nb on ( )θ η . 

 

 
Fig.8. Impact of Nb on ( )φ η . 

 
Fig.9. Impact of S on ( )f ′ η . 
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Fig.10. Impact of S on ( )θ η . 

 
Fig.11. Impact of S on ( )φ η . 

 

 
Fig.12. Impact of M and n on ( )f 0− ′′ . 

 
Fig.13. Impact of M and We, β on ( )f 0− ′′ . 

 

 

 
Fig.14. Impact of S and We, β on ( )f 0− ′′ . 

 
Fig.15. Impact of Nt and Nb on ( )0− ′θ . 
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Fig.16. Impact of Nt and Nb on ( )0− ′φ .  
 
5. Conclusions 
 
 A non-Newtonian fluid whose constitutive equation holds true when shear rates are large and low for 
the tangential hyperbolic fluids. Thermophoresis and Brownian motion are included in the tangent hyperbolic 
model, and they both determine the nanofluid’s dynamics. In the present work, numerical research on the 
magnetic field impact of the tangentially hyperbolic nanofluids through stretching sheets in a linear direction 
is reported. On this basis, a novel approach to the boundary value problem has been established. Here are the 
main results from the study: 

1. We and β, together with the quantifiers M and n, reduce the velocity of the boundary layer thickness 
in both Casson and Williamson fluids. 

2. The influence of Nt and Nb is to increase the temperature. 
3. Nt has the effect of increasing the concentration, while Nb has the opposite effect. 
4. An increase in the suction parameter leads to a decrease in the heat, concentration and velocity of the 

nanoparticles. 
5. The property of We and β is to increase the skin friction coefficient.  
6. In both the Casson and Williamson fluids, the frequency of mass transfer increases with the function 

Nb, but the rate of heat transfer decreases with the function Nt. 
 
Limitations and Future scope 
 
 Complex industrial applications may not be fully captured by the model as it often assumes idealized 
geometry, such as flat stretched sheets. The reliability of many theoretical models cannot be established 
without considerable experimental validation. 
 Innovative applications and a better understanding of fluid behavior in many circumstances can be 
promoted through collaboration with materials science, nanotechnology and engineering experts in the field. 
Researchers can make progress in the field and discover new applications for MHD hyperbolic tangent Casson-
Williamson nanofluid flows by addressing these limitations and exploring these future prospects. 
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Nomenclature 
 
 C – concentration of nanoparticles 

 pC  – specific heat ( )/J kg K⋅   

 WC  – concentration at the surface 

 C∞  – ambient concentration 

 BD  – Brownian motion coefficient 

 TD  – coefficient of thermophoresis diffusion  

 k – thermal conductivity of nanofluid 

 *K  – absorption coefficient 

 n – power law index 

 mq  – mass flux 

 wq  – heat flux 

 S – suction parameter 

 T – fluid temperature ( )K   

 WT  – temperature at the surface 

 T∞  – ambient temperature 

( ),  u v  – velocity elements parallel to x and y axis 

 α – thermal diffusivity ( )/2m sec   

 Γ  – time constant 

 ν  – kinetic viscosity ( )/2m sec  

 ρ – density of the foundational liquid ( )/ 3kg m   

 *σ  – Stefan Boltzman constant 

 τ – ratio between nanomaterial heat capacity to fluid heat capacity 

 wτ  – shear stress 
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