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In this article, a numerical study was carried out to study the dynamic adaptive grid method, based on the concept of 
the equidistribution method. The article explores a method for adapting the computational grid to solving two-dimensional 
Navier-Stokes differential equations, which describe the physical processes of gas dynamics specifically for the problem 
of a two-dimensional channel with an expansion coefficient (H/h) = 2. Different flow characteristics were calculated at 
different Reynolds numbers Re = from 100 to 1000, to get the actual thread behavior. Calculations are performed for 
laminar flow mode. The results of the longitudinal velocity profiles in different sections of the channel and the length of 
the primary and secondary vortices are obtained with a change in the Reynolds number after the ledge. For the numerical 
solution of this problem, a second-order accuracy McCormack scheme was used. To confirm the adequacy and reliability 
of the numerical results, a careful comparison was made with the experimental data of Armaly V.F. et al., taken from the 
literature. It is also shown that as a result of using this method of adaptive grids, it is possible to improve the numerical 
accuracy obtained for a given number of node points. It is shown that the existing method of multiple 2D adaptive meshes 
makes it easier to concentrate meshes in the required areas. This method should prove useful for many Navier-Stokes flow 
calculations.  
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with reverse ledge. 
 

1. Introduction 
 

 Nowadays, the study of separated flows is a classic problem in the field of fundamental fluid mechanics. 
This type of flow is a key object of study for understanding the phenomena of flow separation and reattachment, 
as well as the formation of recirculation zones. Flow separation processes have a wide range of applications in a 
variety of engineering applications, including the fluid dynamics of water around hydrofoils, air flow around 
compressor and turbine blades, and in piping and combustion chambers with abrupt cross-sectional changes. The 
study of hydrodynamic processes in rapidly expanding channels is an important aspect for understanding flow 
instabilities. Such flows arise in various technical systems and structures where there is a sharp change in the 
geometry of the channel (pipe) or the sudden appearance of obstacles, which can lead to a rupture or tangential 
withdrawal of the flow and a change in its kinematic structure. Particularly difficult are the conditions in a flat 
channel with a sharp expansion, where reverse vortices and complex separated flows arise in the zone behind the 
step, presenting significant difficulties for theoretical analysis and numerical modeling. 
 These problems pose the greatest challenge to verification because the flow structure is highly elliptical 
and is ideal for evaluating the performance of any numerical procedure. Initially, the flow has a straight 
entrance length, at which it can be either fully developed or undeveloped. Then a sharp expansion of the flow 
occurs, resulting in the formation of a large vortex. In this region, the flow structure is completely elliptical. 
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Then the flow restores its regime and becomes parabolic again. Typically, at low Reynolds numbers, 
reattachment increases, and as the flow enters transition, the recirculation zone shrinks, but then increases 
again as the flow velocity increases. 
 In 1910, Blasius [1] analytically studied the laminar separation of stationary two-dimensional flows of 
an incompressible fluid in straight channels. Subsequently, such problems were considered by many scientists 
to study the mechanisms of flow separation when observing and experimenting with differential schemes for 
solving the Navier-Stokes equations. Due to their considerable practical significance, existing flows have been 
theoretically and experimentally studied also for laminar [2-4] and turbulent [5-7] modes of motion of 
incompressible and compressible fluid. Most studies in this direction focus on flows in channels with bilateral 
symmetrical sharp expansion. [8-14]. The experimental data studied for this purpose in a flat channel were 
obtained in [8, 9], in which the formation of a circulation zone behind the bar was observed. A number of 
experimental scientists used equations of motion to calculate currents with a sharp expansion when 
approaching the edge layer [14, 15]. 
 A significant, important body of work on dramatically expanding channels has been done by Armali et al. 
[4]. They performed and carried out a thorough analysis of the behavior of flows inside a backward-facing stepped 
channel experimentally and numerically [16-18]. A considerable amount of work was carried out by numerous 
people. Lee and Smith [19] used potential flow theory to derive the result of this problem. But potential flow theory 
could not predict the area of flow distribution or attachment behind the wall. Initial numerical predictions of reverse 
step flows were made by Roach [20], Taylor and Ndefo [21], and Durst and Pereira [22]. 
 The fission region in the lower corner of the stage was predicted by Alaborn et al. [23] after careful 
study of the sharp expansion of such a channel. Brandt et al. [24] and like Bush [25] used the multigrid method, 
and Lange et al. [26] used the method of refinement of local blocks for much more accurate prediction of the 
result. Armaly et al. [16] detailed experimental work with the step geometry having H/h = 1.94. Kim and Moin 
[27] made calculations using the second-order space-time method. Good agreement between theoretical results 
and experimental values was found for Reynolds numbers up to 500. The calculated values did not agree with 
experimental data with Re = 600. Durst et al. [28] further observed the following flow distribution zone in a 
two-dimensional numerical simulation of a symmetric flow with a sharp expansion. Kaiktsis et al. [29] found 
that the instability was created by convective instability.  
 The governing equations of fluid and gas mechanics are usually considered to be highly nonlinear, 
making it difficult to obtain accurate solutions through theoretical analysis. Experimental fluid mechanics 
plays an important role, but has its limitations [46-48]. In numerical fluid dynamics simulations, many methods 
require discretization of the computational domain using a grid. Mesh quality and speed have a significant 
impact on the accuracy and efficiency of numerical simulations. 
 Many problems of hydro and aerodynamics can have dynamically singular or almost singular solutions 
in localized flow regions, such as shock waves, boundary layers, detonation waves, etc. In such cases, 
discretizing the entire region using a uniform mesh may be inefficient because a large number of spatial nodes 
Capturing the solution in areas of high spatial activity may require the use of very fine grids concentrated in a 
small portion of the computational domain. Therefore, developing efficient and robust adaptive mesh methods 
becomes a necessity. Using an ideal adaptive mesh strategy can improve the accuracy of numerical simulations 
and reduce computational costs. Accordingly, the literature on adaptive moving mesh techniques is growing 
rapidly, and there are related books and review articles available in scientific publications [30-33, 50]. 
 In this paper, fluid flow with sudden expansion was investigated numerically for 2D - channel with 
expansion coefficient (H/h) = 2. Other flow characteristics were calculated at different Reynolds numbers (Re 
= from 100 to 1000), to identify and obtain essentially the flow behavior. Calculations are performed for the 
laminar flow regime. Finally, the studied values such as horizontal velocity, lift-off length, the results were 
compared with the available experimental values. 
 The end result of this work is a study of the influence of computational grids on the solution of an 
internal problem of aerohydromechanics. Thus, along with studying the flow structure after the bench, the goal 
was to test adaptive and simple meshes for calculating complex flows characterized by the presence of regions 
with variable flow. To solve the full Navier-Stokes equation, the McCormack scheme was used [34].  
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2. Physical and mathematical formulation of the problem. 
 
 We consider laminar flow in a flat two-dimensional channel with sudden expansion. To understand 
the position of the fluid through the rear-facing stepped channel, the step length is assumed h 5mm= . The 
physical and mathematical formulation of the problem of the analyzed laminar separated flow and the 
configuration of the computational domain are presented in Fig.1. 
 

 
 

Fig.1. Diagram of the design area in a flat channel with a reverse ledge. 
 

 To solve the problem, a Cartesian coordinate system was introduced, the origin of which is located in 
the lower left corner in front of the protrusions. The width of the smaller channel in the left input part is h, and 
in the right output part of the channel it doubles and is equal to H 2h= . The height of the ledge is also h. The 
channel length is defined as L 30H= . At the entrance to the channel, a parabolic Poiseuille flow profile was 
specified for the longitudinal velocity -U, transverse velocity -V and pressure -p, which is equal to zero. To 
describe the fluid motion, nonstationary Navier-Stokes equations were used in incompressible form without 
any simplifying assumptions. For the dimensionless length value, the width of the wider part of the channel 
was chosen - H, and for the dimensionless speed - the average flow rate at the entrance to the channel. The 
length of the attachment of the primary vortex after the step at the bottom of the channel is denoted as 1x , the 
length of the secondary vortex formed after the step at the top of the channel is denoted as Xab, the length of 
the beginning of the secondary vortex is 2x , and the length of the end of the secondary vortex is 3x . 
 System of dimensionless nonstationary two-dimensional Navier-Stokes equations and continuity 
equations with constant density constρ =  in Cartesian coordinates has the following form [35]: 
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here ,U V  - respectively, the dimensionless longitudinal and vertical components of the laminar flow velocity 
vector, p - dimensionless hydrostatic pressure, Re /0HU= ν  - Reynolds number. 
 Initial conditions. It is assumed that in all sections of the channel the condition of fully developed flow 
and longitudinal velocity U has a parabolic Poiseuille profile in the form: 
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boundary conditions 
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3. Navier-Stokes equation in new independent variables 
 
 In many non-stationary problems, features of the solution region, such as areas with large gradients, shift 
and change their position over time. Therefore, it is necessary to use movable grids that adapt to changes in the 
solution over time. Such meshes that dynamically adapt to the solution are called dynamically adaptive [36-39]. 
 

 
 

Fig.2. Physical area mapping Ω on the computing domain Q. 
 
 In the two-dimensional case, to construct a difference scheme on a moving grid, you must first write 
the original problem in the computational domain. The construction of moving grids is based on coordinate 
transformation: 



B.Kholboev et al.  51 

  ( ) ( ), , , , ,x x t y y t= ξ η = ξ η  (3.1) 
 
which is at every moment of time t establishes a one-to-one continuously differentiable correspondence 
between the physical domain Ω and the computing domain Q simple form - unit square (see Fig.2). 
 By virtue of the equalities 
 
  ( ) ( )( ) ( ), , , , , , , , .x t y t t tΦ ξ η ξ η → Φ ξ η  (3.2) 
 
Then, by the rule of differentiation of complex functions, we obtain that: 
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here , , .U V pΦ =  
 To do this, we differentiate the identity ( ) ( )( ), , , , , , ,x x x y t x y t t= ξ η  and 

( ) ( )( ), , , , , , ,y y x y t x y t t= ξ η  first by variable x and y, and then - by t:  

 Let's differentiate the variable by direction x. From the system of equations, we determine 
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 Let's differentiate the variable by direction y. From the system of equations, we determine 
y

∂ξ
∂

 and 
y

∂η
∂

: 

 

  

,

,

x x0
y y

y y1
y y

∂ ∂ξ ∂ ∂η = + ∂ξ ∂ ∂η ∂

 ∂ ∂ξ ∂ ∂η = +

∂ξ ∂ ∂η ∂

 (3.5) 

 



52 Numerical study of adaptive grids for laminar flow in a suddenly… 

from here  
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 Let's differentiate by time variable t. From the system of equations, we determine 
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and Eq.(3.1) is written in new coordinates as the following equation in non-divergent form: 
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4. Two-dimensional equidistribution method 
 
 Let us consider methods for constructing curvilinear grids in which the coordinates of grid nodes are 
determined by solving partial differential equations [40]. Some methods use parabolic equations, others use 
hyperbolic ones, but the most widely used are differential methods for constructing grids based on solving 
elliptic equations. 
 In non-stationary problems, the adaptive mesh must be rebuilt at each time step, since the solution to 
the problem depends on time. Let us indicate the method we use to calculate the coordinates of nodes ,

n
i jx  on 

( )n 1+  -m layer under the assumption that the grid already exists on the n-m layer in time and the solution is 

calculated on it ,
n
i jU . 

 To determine the location of nodes ,
n 1
i j

+x .You can use the equidistribution method. However, when 
solving one-dimensional problems, it was discovered [41] that the use of the classical equidistribution method 
for constructing moving adaptive grids can lead to oscillations of the trajectories of adaptive grid nodes and 
non-monotonic changes in the ratios of the lengths of neighboring grid cells. In addition, the solution to the 
classical equation is very sensitive to disturbances in the control function, and the constructed mesh can 
oscillate strongly in time even when the solution changes slightly. Therefore, in [42] it was recommended to 
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add the right side to the equation of the classical equidistribution method, which is responsible for the 
smoothness of the trajectories of grid nodes. We will also use this empirically obtained recommendation in the 
two-dimensional case: to construct moving meshes we will use a two-dimensional analogue of the one-
dimensional evolution equation from [42]: 
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where ω  - control function, β  a positive parameter selected experimentally in order to reduce oscillations of 
the trajectories of grid nodes. When the parameter value is small β  member influence β  insignificantly, but 
at large β  the displacement values of the nodes decrease and the mesh becomes “sedentary” on the tasks 
parameter α  was equal to 1. 

 Boundary conditions [ , ] , [ , ] , [ , ] , [ , ] .y xx Nx j L y Nx j x i Ny y i Ny h∂ ∂= = = =
∂ξ ∂η

 

 For the numerical solution of the Navier-Stokes Eq.(3.8), the McCormack scheme was used, and for 
Eq.(4.1), the variable direction scheme was used. 
 
5. Numerical schemes. MacCormack-MC scheme 
 
 In computational fluid dynamics, the McCormack method is a widely used discretization scheme for 
the numerical solution of hyperbolic partial differential equations [30]. This two-step second-order finite 
difference method was proposed by Robert and McCormack. This scheme is especially useful for solving 
nonlinear PDE such as the Euler and Navier-Stokes equations. Let's write the Navier-Stokes Eq.(3.1) in new 
coordinates in the following matrix form: 
 

  
,

Re Re

U V
t

1 1 1 1 1 1
J J J J

Φ∂Φ ∂Φ ∂Φ+ Α + Β + Π =
∂ ∂ξ ∂η

          ∂ ∂Φ ∂ ∂Φ ∂ ∂Φ ∂ ∂Φ= Ε − Γ + Η − Μ          ∂ξ ∂ξ ∂ξ ∂η ∂η ∂η ∂η ∂ξ          

 (5.1) 

 
here 
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  , ,

1 y x y x y x 1 x y y x x y
J t t J t tU

V 1 y x y x y x 1 x y y x x y
J t t J t t

        ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂− − − − − −        ∂η ∂η ∂η ∂ ∂ ∂η ∂ξ ∂ξ ∂ ∂ξ ∂ ∂ξ          Φ = Α = Β =            ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂  − − − − − −       ∂η ∂η ∂η ∂ ∂ ∂η ∂ξ ∂ξ ∂ ∂ξ ∂ ∂ξ        

,







 


 

 

  , ,

2 2

2 2

1 y x 1 y y x x1 y p 1 y p
J JJ J

1 x p 1 x p 1 y y x x1 y x
J J JJ

Φ

     ∂ ∂   ∂ ∂ ∂ ∂∂ ∂ ∂ ∂     +    +−      ∂η ∂η    ∂ξ ∂η ∂ξ ∂η∂η ρ∂ξ ∂ξ ρ∂η      Π = Ε = Γ =
∂ ∂ ∂ ∂       ∂ ∂ ∂ ∂   ∂ ∂− +      +∂ξ ρ∂η ∂η ρ∂ξ     ∂ξ ∂η ∂ξ ∂η     ∂η ∂η     

,


 
 
 
  
 

 

  , .

2 2

2 2

1 y x 1 y y x x
J J

1 y y x x1 y x
JJ

     ∂ ∂   ∂ ∂ ∂ ∂  +    +    ∂ξ ∂ξ    ∂ξ ∂η ∂ξ ∂η     Η = Μ =      ∂ ∂ ∂ ∂   ∂ ∂  +    +      ∂ξ ∂η ∂ξ ∂η     ∂ξ ∂ξ     

 

 
 Applying the explicit two-step predictor-corrector method to the nonlinear Navier-Stokes equation, 
the following difference scheme is obtained: 
 
Predictor 

  

( ) ( )

( )

, , , ,
, , , ,

, , , , ,
, ,

, , , ,
, ,

Re

Re

n n n n
i 1 j i j i j 1 i jn n n

i j i j i j i j

i j i 1 j i 1 j i j i 1 jn n
i 1 j i j2 2

n n
i j i 1 j i 1 j 1 i 1 j 1n

i 1 j i 1 j2

t U V

21t
J 2 2

1 1t
J 2 22

+ +

+ − +
+

− + + + −
− +

 Φ − Φ Φ − Φ
 Φ = Φ − Δ Α + Β +
 Δξ Δη 

 Ε + Ε Ε + Ε + Ε+Δ Φ − Φ +
Δξ Δξ

 Ε + Ε Φ − Φ + Φ + Δ Γ − Δξ ΔηΔξ 

( )

( ) ( )

, ,, ,
, ,

, , , , ,
, ,

, , , ,
, ,

Re

Re

n n
i j i j 1i 1 j 1 i 1 j 1 n

i 1 j i j 12

i j 1 i j i j 1 i j i j 1n n
i j i j 12 2

n n n n
i 1 j 1 i 1 j 1 i 1 j 1 i 1 j 1

i j 1 i j 1

1t
2 J 2

2

2 2

1 1t
J 2 2 2

+− + − −
− +

− + −
−

+ + − + + − − −
+ +



 Η + ΗΦ − Φ  +Γ + Δ Φ − Δη Δη  
Η + Η + Η Η + Η + Φ + Φ +

Δη Δη 
 Φ − Φ Φ − Φ
+Δ Μ − Μ

Δη Δξ Δξ
.



 


 (5.2) 

 
Corrector 
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( ) ( ) ( )

, , , ,
, ,, , ,

, , , , , , ,
, , ,

,
,

Re

Re

n n n n
n ni j i 1 j i j i j 1n 1 n
i j i ji j i j i j

i j i 1 j i 1 j i j i 1 j i j i 1 jn n n
i 1 j i j i 1 j2 2 2

n
i 1 j 1 i

i 1 j

1 t U V
2

21t
J 2 2 2

1 1t
J 2

− −+

+ − + −
+ −

+ + +
+

  Φ − Φ Φ − Φ  Φ = Φ + Φ − Δ Α + Β +  Δξ Δη  
 Ε + Ε Ε + Ε + Ε Ε + Ε
 +Δ Φ − Φ + Φ +
 Δξ Δξ Δξ 

Φ − Φ
+Δ Γ

Δξ

( ) ( ) ( )

, , ,
,

, , , , , , ,
, , ,

, , , ,
, ,

Re

Re

n n n
1 j 1 i 1 j 1 i 1 j 1

i 1 j

i j i j 1 i j 1 i j i j 1 i j i j 1n n n
i j 1 i j i j 12 2 2

n n n
i 1 j 1 i 1 j 1 i 1 j 1 i 1 j

i j 1 i j 1

2 2

21t
J 2 2 2

1 1t
J 2 2

− − + − −
−

+ − + −
+ −

+ + − + + − − −
+ +

 Φ − Φ
 − Γ +
 Δη Δη 

 Η + Η Η + Η + Η Η + Η
 +Δ Φ − Φ + Φ +
 Δη Δη Δη 

Φ − Φ Φ − Φ
+Δ Γ − Γ

Δη Δξ
.

n
1

2

   Δξ  

(5.3) 

 This is an explicit scheme of second order accuracy in time and space with an approximation error 

( ) ( ) ( )( ), ,2 2 2O t x yΔ Δ Δ . 

 Initially (predictor) the estimate is found n 1
i

+Φ  values and at the n 1+  -m time step, and then 

(corrector) the final value is determined n 1
i

+Φ  on n 1+  -m time step. Please note that in the predictor it is 
approximated by direct differences, and in the corrector by inverse differences. 
 The method of variable directions was used for the numerical solution of Eq.(4.1). Let 's replace the 
differential problem with a difference analog of the following form: 
 

  

/ / / / /
, , , , , ,

/ , , / , / , , / ,

, , , ,
, / , , / , / , , /

.

n 1 2 n n 1 2 n 1 2 n 1 2 n 1 2
i j i j i 1 j i j i j i 1 j

i 1 2 j 22 i 1 2 j i 1 2 j 22 i 1 2 j

n n n n
i j 1 i j i j i j 1

i j 1 2 11 i j 1 2 i j 1 2 11 i j 1 2

1 g g
0 5 t

1 g g

+ + + + +
+ −

+ + − −

+ −
+ + − −

 − − −
 β = ω − ω +
 Δ Δξ Δξ Δξ 

 − −
 + ω −ω
 Δη Δη Δη 

x x x x x x

x x x x

/ / / / /
, , , , , ,

/ , , / , / , , / ,

, , , ,
, / , , / , / , , /

,

.

n 1 n 1 2 n 1 2 n 1 2 n 1 2 n 1 2
i j i j i 1 j i j i j i 1 j

i 1 2 j 22 i 1 2 j i 1 2 j 22 i 1 2 j

n 1 n 1 n 1 n
i j 1 i j i j i j 1

i j 1 2 11 i j 1 2 i j 1 2 11 i j 1 2

1 g g
0 5 t

1 g g

+ + + + + +
+ −

+ + − −

+ + + +
+ −

+ + − −

 − − −
 β = ω − ω +
 Δ Δξ Δξ Δξ 

− −
+ ω −ω

Δη Δη

x x x x x x

x x x x
.

1














      Δη  

 (5.4) 

 
 Here n  - number of iterative approximation, τ  - iteration parameter, since the components of the 
metric tensor depend on the solution, the coefficients ,11 22g g  calculated using the solution n - st iteration. 
The velocity obtained according to the schemes Eq.(5.3) does not satisfy the continuity Eq.(5.4). Therefore, 
we make a correction to the SIMPLE procedure [43]. ,i jpδ , which satisfies the condition of non-uniformity, 
in the new coordinate has the following form: 
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,

n 1 n 1
n 1 n 1

n 1 n 1
n 1 n 1

U U1 y x y x 1 y x x yU U t
J t t J t t

p p1 y 1 yt
J J

V V1 y x y x 1 y x x yV V t
J t t J t t

+ +
+ +

+ +
+ +

 ∂   ∂  ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂= + Δ − + − −     ∂ξ ∂η ∂ ∂ ∂η ∂η ∂ ∂ξ ∂ ∂ξ    
 ∂δ ∂δ ∂ ∂+Δ − ∂ξ ∂η ∂η ∂ξ 

 ∂   ∂  ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂= + Δ − + −   ∂ξ ∂η ∂ ∂ ∂η ∂η ∂ ∂ξ ∂ ∂ξ   





.p p1 x 1 xt
J J









  −   
  ∂ ∂ ∂ ∂+Δ − +  ∂ξ ∂η ∂η ∂ξ  

 (5.5) 

 
 Substituting the velocity now , ,,n 1 n 1

i j i jU V+ +   in the continuity equation it is easy to obtain a parabolic 
equation for the pressure correction in the new coordinate has the following form: 
 

  

2 2 2 2

p 1 y x y x p 1 y x x y p
t J t t J t t

1 1 y x p 1 1 y x p
J J J J

1 1 y
J J

   ∂δ ∂ ∂ ∂ ∂ ∂δ ∂ ∂ ∂ ∂ ∂δ− − − − −   ∂ ∂η ∂ ∂ ∂η ∂ξ ∂ ∂ξ ∂ ∂ξ ∂η   
                ∂ ∂ ∂ ∂δ ∂ ∂ ∂ ∂δ         + + − + +                ∂ξ ∂η ∂η ∂ξ ∂η ∂ξ ∂ξ ∂η                
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

 ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂= − − − +  Δ ∂η ∂ξ ∂ξ ∂η ∂η ∂ξ ∂ξ ∂η 

 (5.6) 

 
Let us write Eq.(5.6) in the following form: 
 

  
A B C

D E F G;

p p p 1 p
t J

1 p 1 p 1 p
J J J

 ∂δ ∂δ ∂δ ∂ ∂δ− − − − ∂ ∂ξ ∂η ∂ξ ∂ξ 
     ∂ ∂δ ∂ ∂δ ∂ ∂δ+ + + =     ∂η ∂η ∂ξ ∂η ∂η ∂ξ     

 (5.7) 

here 
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t J J J J
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The method of variable directions was also used for the numerical solution of Eq.(5.7): 
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 (5.8) 
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 cont. (5.8) 

 
The solution to this problem is as follows: 

1) In Eq.(5.4) the initial coordinates are determined. 
2) According to Eq.(5.3), intermediate values of the parameters are determined. 
3) Then the correction pressure is determined using Eq.(5.8). 
4) Consequently, the pressure on the temporary layer n+1 will be equal n 1 np p p+ = + δ . 
5) The iterative process continues until the specified accuracy, that is, until the following condition is met: 

, ,max n 1 n 1
i j i j1 i n

U U+ +

≤ ≤
− ≤ ε . 

 Solution the problem, a rectangular calculation grid 200 100×  with the size was used 
/ , / , /x 5 100 y 1 100 t 1 1000Δ = Δ = Δ <  and the adaptive mesh also used a computational mesh 200 100× . 

 
6. Discussion and results 
 
 Figure 3 shows the experimental and numerical results of Armali et al. for the longitudinal velocity 
profile, as well as for the two-fluid model for the Reynolds number Re 400= . Numerical results for the 
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McCormack scheme for both a simple mesh and an adaptive mesh. Up to Re 500< , experimental and 
numerical results did not reveal any additional detachment regions other than the main one attached to the 
wall. Under these conditions, good agreement between experiments and numerical results is achieved. 
 This phenomenon is explained by the fact that at such values of the Reynolds number the flow is still 
laminar and the Navier-Stokes equations are essentially solved. At higher Reynolds numbers, the flow acquires 
anisotropic turbulence due to recirculation. This explains the discrepancies between the experimental and 
numerical results shown in Fig.4 at Reynolds number Re 1000= . In these pictures U - dimensionless 
longitudinal velocity. 
 Figure 3 shows the results of the longitudinal velocity using different schemes in sections after the 
ledge. Reynolds number Re 400= . From Fig.3 it can be seen that at low Reynolds numbers, all results give 
approximately the same result. From Fig.4 it is clear that when using adaptive grids, the parameter describes 
the parameter very well ( /U x h+ ) by /x h 16<  for Re 1000= . Small deviations from experimental data are 
observed in the range /12 x h 16< < . 
 In Fig.5 shows the results of the length of the primary vortex with a change in the Reynolds number. 
As we can see from Fig.5, the results of the primary vortex length obtained from different meshes, at Re 400<  
are quite close to each other, but the result obtained from different meshes is sharply different when Re 400> . 
As can be seen in Fig 5, at Re 400>  the result obtained in a simple mesh decreases and the error increases. 
The results obtained with an adaptive mesh gives a better result. Table 1 shows the design errors for the primary 
vortex length. 
 

а) 

  
b) 

 
Fig.3. Profiles of the axial ( /U x h+ ) velocity components: (○) Armali et al. (experiment),  
          (- - -) McCormack scheme of a simple grid, (---) McCormack's scheme of an adaptive grid. 
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Fig.4. Profiles of the axial ( /U x h+ )velocity components: (○) Armali et al. (experiment), 
          (- - -) McCormack scheme of a simple grid, (---) McCormack's scheme of an adaptive grid. 
 

 
 
Fig.5. Results the length of the primary vortex with a change in the Reynolds number. (□) Armali et al.  
          (experiment), (- - -) McCormack scheme of a simple grid, (---) McCormack scheme of adaptive grid. 
 
Table 1. Scheme errors for primary vortex length. 
 

Number  Re Experiment Simple mesh Error % Adaptive grid Error % 
100 3 2.9 3.33 2.9 3.333 
200 4.5 4.9 8.88 4.9 8.88 
300 6.5 6.6 1.538 6.6 1.53 
400 8 8 0 8.1 1.25 
500 10 9 10 9.3 7 
600 11 9.4 14.54 10.5 4.54 
700 13 9.6 26.15 11.8 9.230 
800 14.5 9.8 32.41 12.8 11.72 
900 15.2 10.1 33.55 13.8 9.210 

1000 16.2 10.9 32.71 13.4 17.28 
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Figure 6 shows the results of the length of the secondary vortex with a change in the Reynolds number. 
 

 
 

Fig.6. Results of the length of the secondary vortex with a change in the Reynolds number. 
 

 

Fig.7a. Changing the adaptive grid, velocity field vector and velocity contour at T=1. 
 

 

 

Fig.7b. Changing the adaptive grid, velocity field vector and velocity contour at T=5. 
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Fig.7c. Changing the adaptive grid, velocity field vector and velocity contour at T=7. 

 

Fig.7d. Changing the adaptive grid, velocity field vector and velocity contour at T=10. 
 

 

Fig.7e. Changing the adaptive grid, velocity field vector and velocity contour at T=20. 
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Fig.7f. Changing the adaptive grid, velocity field vector and velocity contour at T=30. 
 

 

Fig.7g. Changing the adaptive grid, velocity field vector and velocity contour at T=40. 
 

 

Fig.7h. Changing the adaptive grid, velocity field vector and velocity contour at T=50. 
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Fig.7i. Changing the adaptive grid, velocity field vector and velocity contour at T=60. 

 
Fig.7j. Changing the adaptive grid, velocity field vector and velocity contour at T=70. 
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Fig.7k. Change of adaptive grid, velocity field vector and velocity isoline of dimensionless time-averaged 

velocity. 
 
 Figures 7a-7y shows isolines of longitudinal velocity at different times at Reynolds number Re=1000. 
 From the above figures it can be seen that in all cases the zone behind the protrusion is characterized 
by the formation of reverse flows, and the extent of this zone and the structure of the circulation flow depend 
not only on the Reynolds number, but also on the computational grid. Numerical studies have shown that the 
McCormack scheme of second order accuracy, when using adaptive accuracy grids, gives closer results than 
simple grids [44, 45]. 
 
7. Conclusions 
 
 This work is a study of methods for adapting the computational grid to solving two-dimensional 
Navier-Stokes differential equations that describe the physical processes of gas dynamics specifically for the 
problem of a two-dimensional channel with an expansion coefficient ( )/H h 2= . The equidistribution method 
was used to construct a dynamic adaptive grid. Special attention is paid to improving the accuracy of the 
solution obtained on an adaptive grid. Based on theoretical research, algorithms for solving the Navier-Stokes 
equations on an adaptive grid in two-dimensional formulations were developed. 
 The operation of the modules has been tested on 2D problems of gas dynamics that have experimental 
solutions. For all the considered cases, the solutions obtained on the adaptive mesh well resolved the gas-
dynamic features of the problems and were stable. The calculation results confirmed that the use of a dynamic 
adaptive grid instead of a fixed one leads to a significant reduction in the root-mean-square error of the solution 
and a reduction in the time required for calculations. This is proof of the effectiveness and efficiency of the 
proposed algorithms. 
 The study examined the effect of the McCormack finite difference scheme using the SIMPLE 
procedure on separation processes. As a result of a detailed numerical analysis of flow velocity fields, patterns 
of formation of a vortex structure in a flat channel with steps were revealed. This includes secondary vortex 
formations and unsteady separated flow regimes. 
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Nomenclature 
 
 p  – hydrostatic pressure 

 PDE – partial differential equations 
 Re  – Reynolds number 
 U  – longitudinal components of the velocity vector 
 V  – vertical components of the velocity vector 
 ω  – control function 
 β  – positive parameter  
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