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A design optimization of a staggered pin fin heat sink made of a thermally conductive polymer is presented. 
The influence of several design parameters like the pin fin height, the diameter, or the number of pins on thermal 
efficiency of the natural convection heat sink is studied. A limited number of representative heat sink designs 
were selected by application of the design of experiments (DOE) methodology and their thermal efficiency was 
evaluated by application of the antecedently validated and verified numerical model. The obtained results were 
utilized for the development of a response surface and a typical polynomial model was replaced with a neural 
network approximation. The particle swarm optimization (PSO) algorithm was applied for the neural network 
training providing very accurate characterization of the heat sink type under consideration. The quasi-complete 
search of defined solution domain was then performed and the different heat sink designs were compared by 
means of thermal performance metrics, i.e., array, space claim and mass based heat transfer coefficients. The 
computational fluid dynamics (CFD) calculations were repeated for the most effective heat sink designs.  

 
Key words: heat transfer, design optimization, heat sink, neural network approximation, numerical modeling, 

thermally conductive polymer. 

 
1. Introduction 

 
Heat sinks are the most common hardware used for the heat dissipation. They are employed in 

microelectronic devices as well as in high power electrical components and are considered to be the simplest 
and the cheapest cooling solution. With constantly increasing demands for the heat dissipation the 
optimization of the heat sink design has become a key issue. In most cases, an improvement of the heat sink 
thermal performance has to be made with respect to the practical constrains like the available pressure drop, 
external dimensions, mass, volume or price. For many years the optimization was done basing on the 
analytical models or strongly simplified numerical models of the heat sinks. Nowadays, workstations with 
high computational power become common engineering tools and the complex computational fluid dynamics 
(CFD) simulations might be applied for the thermal analyses and design optimization of the heat sinks.  
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1.1. Literature review 

 
The heat sink design optimization was addressed in various publications (Lee, 1995; Bahadur and 

Bar-Cohen, 2005; Chen et al., 2005). Lee (1995) presented the optimization approach which was based on an 
analytical simulation model for predicting thermal performance of heat sinks. The effect of various design 
parameters on the performance of a heat sink was illustrated. The work included also two heat sink 
classifications. One was based on the cooling mechanism employed to remove the heat from the heat sink 
and the other on the manufacturing methods and the final heat sink shape. The first categorization named 
passive, semi-active and active heat skins, liquid cooled cold plates and phase change systems. The other 
classification included stampings, extrusions, bonded or fabricated fins, castings and folded fins and referred 
to metallic made heat sinks. The work by Lee (1995) was mainly focused on active extruded heat sinks.  

Aluminum is still the most widely used material for manufacturing of heat sinks due to its high 
thermal conductivity, relatively low weight and price. However, a new class of polymers characterized by 
high thermal conductivity has been introduced into the market recently (Coolpolymers Inc., 2012). The 
availability of such materials combined with the application of the injection molding process extends the 
flexibility of the heat sink shape. Thermal conductivity of such polymers is up to 20 W/mK which is much 
less than aluminum. However, lower heat conduction can be compensated by the convection and radiation 
from a more complex external surface, especially in natural convection heat sinks, where the main limiting 
factor for the heat dissipation is the heat transfer coefficient. The weight reduction is an additional advantage 
of a plastic heat sink as well as the unique possibility of electrically insulating properties , that is particularly 
important in the electronic and electrical applications.  

Bahadur and Bar-Cohen (2005) presented a design and optimization methodology for the polymer 
staggered pin fin heat sinks. The proposed approach was dedicated to the natural convection heat sinks and 
was based on the application of the correlation developed by Aihara et al. (1990). The influence of heat sink 
geometric parameters like the pin fin height, pin diameter, horizontal spacing and pin fin density on the heat 
dissipation capabilities was discussed and the thermal performance metrics were proposed for that purpose. 
The overall thermal capability of a convective heat sink was represented by array Eq.(1.1), space claim 
Eq.(1.2) and mass based Eq.(1.3) heat transfer coefficients.  
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The array heat transfer coefficient is defined as the ratio of the heat sink cooling rate qT to the area 

occupied by the array of pin fins and to the base plate excess temperature Θb. In Eq.(1.1) L and W are the 
array length and width, respectively. In the space claim heat transfer coefficient the array area is extended to 
the volume occupied by the pin fins and H in Eq.(1.2) is the height of the pin fin. Finally, in the mass based 
heat transfer coefficient the heat sink cooling rate qT is divided by the base plate excess temperature Θb and 
by the mass of the pin fin. In Eq.(1.3) V and ρ are the pin volume and the fin material density respectively. 

The methodology proposed by Bahadur and Bar-Cohen (2005) was validated and verified with the 
experimental measurements and CFD simulations. The obtained results revealed limitations related to the 
correlation proposed by Aihara et al. (1990), which was originally restricted to the heat sinks with fins 
density in a range of 2.25-10.8 fins/cm2. For the heat sinks fulfilling this requirement the prediction of 
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thermal efficiency had the accuracy within ±10%, while for the ones that exceeded these boundaries as much 
as 30% over prediction was observed.  

Chen et al. (2005) presented a method for thermal optimization of a pin fin heat sink under multiple 
constraints like the available pressure drop, the space limitations and the mass restrictions. In the proposed 
approach: (a) statistical methods were applied for the sensitivity analysis of the design factors, (b) the design 
of experiments (DOE) and the response surface methodology (RSM) were used for the development of 
regression models of the thermal resistance and pressure drop in terms of the design factors and (c) the 
gradient-based numerical optimization technique was employed in the search for optimal design parameters. 
Thermal and hydrodynamic models of the pin fin heat sink were developed for evaluation of the thermal 
resistance and the pressure drop. These analytical models were validated with the use of experimental data, 
showing good accuracy, which was superior to the solution obtained using the commercial CFD software, 
Icepack (Fluent Inc., 2002).  

The key concept of the approach proposed by Chen et al. (2005) was the application of the DOE and 
the RSM in the heat sink optimization. A short presentation of these statistical methods for establishing the 
explicit relationships between the design variables and the responses in an explored system was made by the 
authors and more information on this topic can be found in the related literature (Montgomery, 1997; Wu and 
Hamada, 2000; Myers and Montgomery, 2002). The example calculations were made for a pin fin heat sink, 
but the proposed optimization procedure is not limited to any particular design.  

Chen et al. (2005) used the traditional RSM in which the second-order polynomial model – Eq.(1.4) 
– was applied for the approximation of the experimental results, where βi represents the linear effect of 
design variables xi, βii represents the quadratic effect of xi, βij represents the linear-by-linear interaction 
between xi and xj, end ε is the fitting error. 

 
 0 i i ii ii ij ij

i i ij

y x x x          . (1.4) 

 
The statistical requirements related to the polynomial approximation require the data from strictly 

defined points for the model development. It means that the values of design parameters such as the fin 
height, the diameter of fin and their density are precisely defined. One might imagine a situation in which 
these requirements could not be fulfilled, e.g., due to the limitations in the heat sink manufacturability or the 
experimental setup. In some cases also the approximation with a single polynomial surface may not provide 
sufficient accuracy for the analysis of different heat sink shapes. In such circumstances, alternative 
approximation methods could be applied and the artificial neural networks are the example.  

Beyer et al. (2006) presented an application of the response surface methods based on the neural 
networks in the field of engineering. A short presentation of the neural network concept was made by the 
authors and more detailed information can be found in the related literature (Hassoun, 1995; Gurney, 1997; 
Tadeusiewicz, 1993).  

In general, neural networks with their structure and performance imitate the human brain. A neuron 
is a basic component of the network (Fig.1). It is capable of mapping several input signals into a single 
output, according to the so called activation function. The most common design of a neural network, which is 
called the feedforward neural network, consists of several layers which are composed of a number of neurons 
(Fig.2). The neurons from the same layer are not connected to one another. Instead, their outputs are used as 
the input signals for each neuron in the following layer. The goal of such network is processing of the input 
signals and changing them into one or more outputs. Such a process can be applied to the classification, 
approximation or optimization.  
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Fig.1. Structure of neuron (Beyer et al., 2006). 
 

 
 

Fig.2. Structure of feedforward neural network (Beyer et al., 2006). 
 

Development of a neural network requires a training. A predefined set of input and output signals is 
used for evaluating weights between the neuron connections (synapses). The common approach is the 
utilization of two sets of predefined inputs and outputs. The first one is used for the network learning while 
the other for testing of its accuracy.  
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The training process could be considered as an optimization problem in which an error of a neural 
network should be minimized and the neuron weights are the independent variables. Traditionally, the 
neuron weights are searched with the gradient descent algorithms, e.g., the backpropagation of error. These 
techniques are good enough for most uses, but are susceptible to local optima. Kennedy et al. (2001) discuss 
that issue in their work and propose an alternative approach which is based on the particle swarm 
optimization (PSO) method.  

The PSO (Kennedy et al., 2001) is a stochastic optimization method with root in the numerical 
modeling of natural phenomena like the movement of a skull of fish, flock of birds or swarm of flying 
insects. In that method a limited population of potential solutions (particles) is used for searching of a 
solution domain. During the consecutive iterations these particles are moving through the search space. 
The velocity and the direction of each particle is defined independently basing on: its speed in previous 
iteration, position of the best solution found by the particle so far and position of the best solution found 
by other particles. Moreover, the influence of the mentioned factors for each particle and in each moving 
step iteration is random. The final solution is obtained when all particles gather around one spot in the 
solution domain.  

It is considered that the PSO, like other stochastic optimization methods, demonstrates resistance 
to the local optima. Additionally, it is characterized by fast convergence. Kennedy et al. (2001) shortly 
described the application of the PSO to neural network learning referring to work of Eberhart et al. (1996) 
for more details. The discussed example indicated the PSO capabilities, when 3.5 hours of training time 
for the traditional backpropagation method was reduced to 2.2 minutes with the PSO applied as a training 
algorithm.  
 
1.2. Scope of investigation 

 
This paper deals with the analysis of the thermal efficiency and the design optimization of a 

staggered pin fin heat sink made of a thermally conductive polymer. It is a passive heat sink according to 
Lee (1995) classification, thus natural convection and radiation are the main heat dissipation 
mechanisms.  

The steps of the procedure for the analysis and optimization of selected heat sink design are as 
follows: 

a) selection of design parameters and their ranges  
b) performance of a limited number of experiments for selected heat sink shapes 
c) determination of a response surface by employing the neural network approximation 
d) searching of an optimal design basing on the selected heat sink performance metrics 
e) verification of “the best” design – performing experiments for the selected optimal heat sink 

designs. 
The geometry of the heat sink is shown in Fig.3. For the purpose of analysis and optimization it is 

assumed that the dimensions of the base plate are fixed to 25x25x3 mm. The design parameters selected for 
the optimization are listed below together with their ranges: 

 N is number of pin fins on the base plate diagonal: 5, 7 or 9 
 d is diameter of the pin fin top: 1.0-3.0 mm 
 H is pin fin height: 20.0-40.0 mm 

The selected heat sink material is CoolPoly® E5101 (Coolpolymers Inc., 2012) and its properties 
are: 

 density: 1700 kg/m3 
 specific heat: 900 J/kgK 
 thermal conductivity: 20 W/mK 

The heating power of 9.375 W at the base plate and the ambient temperature of 25°C were also 
assumed for the purpose of design optimization. 
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Fig.3. Heat sink design under consideration. 
 
1.3. Paper structure 

 
This paper consists of several sections. This section includes an introduction, literature review and 

scope of the presented work. The next one is dedicated to the numerical model of the heat sink and the CFD 
simulations. Experimental and simulation results are compared, allowing evaluation of the numerical model 
accuracy. The subsequent section presents the procedure of analysis and optimization, and each step is 
described with more details. The result are presented in a separate section and the influence of selected 
design parameters on the heat sink performance is discussed. 

 
2. CFD model 

 
The response surface from step (c) in section 1.2. is developed basing on data from a limited number 

of experiments. Real experiments are difficult as they would require manufacturing of several heat sinks that 
differ in pin fin number, diameter and height. The approach in which physical heat sinks are replaced with 
the analytical models is presented for example by Lee (1995), Bahadur and Bar-Cohen (2005) or Chen et al. 
(2005). In the last mentioned paper the numerical model based on the commercial CFD software Icepak 
(Fluent Inc., 2002) is also tested. However, when compared to experimental measurements, it provides less 
accurate results in comparison with the analytical model.  

The uncontested advantage of numerical modeling and CFD simulations is that the conductive, 
convective and radiative heat transfers are directly solved and potentially any type and any shape of a heat 
sink could be analyzed. The increase of the computational power of workstations allows the application of 
more precise discretization (high density meshes) and advanced physical models, while the parallel 
computing shortens calculation times. That is why the analysis and optimization of the heat sink design 
presented in this paper is based on the numerical model and the commercial CFD software ANSYS Fluent 
(ANSYS. Inc., 2009; 2009a) is used for that purpose.  
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2.1. Basics of numerical model  

 
The proposed numerical model includes the geometry of the pin fin heat sink and the representative 

volume of surrounding air. Mathematical models solved in the calculations have to represent all important 
physical phenomena like the buoyancy driven and turbulent air flow or the conductive, convective and 
radiative heat transfer.  

In the ANSYS Fluent the mass – Eq.(2.1.) – and momentum – Eq.(2.2.) – conservation equations are 
solved for any flow type. Moreover, the energy conservation equation – Eq.(2.3.) – is added for the flows 
that involve the heat transfer. The heat transfer inside non-moving solid regions is governed by Eq.(2.4), 
which is a simplified form of Eq.(2.3). 
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The set of equations is extended with the additional transport equations when the flow is turbulent. 

The form of these transport equations depends on the selected turbulence model and ANSYS Fluent offers a 
large number of choices, e.g., the Spalart-Allmaras model (Spalart and Allmaras, 1992) preferred by the 
authors of this paper. 

The natural convection and buoyancy driven flow are solved when the air density ρ in Eqs (2.1)-(2.3) 
is temperature dependent and employment of the ideal gas law – Eq.(2.5.) – is one of the methods. In this 
work other air properties, i.e., the specific heat, the thermal conductivity and the dynamic viscosity, are also 
defined as temperature dependent. 
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The radiative heat transfer is included in the heat transfer equation – Eq.(2.3.) – by means of the heat 

source term Sh. It is defined by different formulas depending on the selected radiation model and among 
several others the so called Discrete Ordinates (DO) Radiation Model (Chui and Raithby, 1993; Raithby and 
Chui, 1990) is offered by the ANSYS Fluent. 

Although with the proposed numerical model the time dependent analysis is possible, the analysis of 
the heat sink thermal performance is limited to the steady state conditions. The heating up time is irrelevant 
for the purpose of design optimization. In such a situation it is worth noting that removing the time from the 
heat transfer equation in the solid regions – Eq.(2.4) – makes the thermal conductivity k the only property of 
the heat sink material that has influence on the temperature distribution. 
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2.2. Numerical model validation and verification 
 
Regardless of whether the heat sink model is numerical or analytical, its validation and 

verification is always required. The accuracy of the proposed numerical model is tested by comparison of 
the temperature values coming from experimental measurements and corresponding simulations.  

The experimental stand with the pin fin heat sink made of the thermally conductive 
thermoplastic material CoolPoly® E5101 is shown in Fig.4. The heat sink is mounted on a copper plate, 
on which opposite side a thin heater was glued. Below the heater a thick layer of thermal insulating 
material is attached in order to force the heat flow in a direction from the heater towards the heat sink. 
The whole assembly of the heat sink with the copper plate, heater, and insulation layer is hung on 
strings.  

Experimental results comprise rise of the heater temperature measured for several levels of 
heating power, which is controlled through settings of voltage and current at DC power supply device.  

The geometry considered in the numerical model of the experimental setup is depicted in Fig.5. 
The existing symmetry planes allow limitation of the numerical model only to one eighth of the heat sink 
and go far toward reduction of calculation time.  

 
 

 
 
 

Fig.4. Heat sink used for validation and verification of numerical model. 
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Fig.5. Numerical model geometry. 
 

The results of the measurements and simulations are presented in Tab.1. The accuracy of the 
numerical model is evaluated with the absolute and the percent error. It could be noticed that the calculated 
temperature is always slightly higher than the measured one. The absolute error is increasing and the percent 
error is decreasing with the rise of the measured heater temperature. The measurement error is considered as 
the main reason for the high value of the percent error in the first two experiments. The typical accuracy of a  
T-type thermocouple is 0.5 K or 1.0 K depending on the sensor class. It is a significant value in comparison 
to the absolute error of performed measurements. Finally, it is concluded that the numerical model provides 
accurate results and it could be used as the replacement of real experiments.  

 
Table 1. Results of verification of numerical heat sink model. 

 

Exp. 
Voltage Current Heating 

power 
Measured rise 
of heater temp. 

Computed rise 
of heater temp.

Absolute 
error 

Percent 
error 

V A W K K K % 
01 2.024 0.182 0.368 3.92 4.70 0.78 19.9 
02 4.027 0.374 1.506 13.69 15.67 1.98 14.5 
03 6.025 0.563 3.392 27.36 29.61 2.25 8.2 
04 6.022 0.563 3.390 27.18 29.21 2.03 7.5 
05 8.096 0.749 6.064 43.82 46.68 2.86 6.5 
06 10.044 0.942 9.461 64.00 67.01 3.01 4.7 

 
In Figs 6-8 examples of the results from computer simulations are presented including: paths of air 

buoyancy driven flow and temperature distribution at the heat sink surface.  
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Fig.6. Natural convection flow paths colored by air temperature. 
 

 
 

Fig.7. Natural convection flow paths colored by air velocity magnitude. 
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Fig.8.  Temperature distribution at heat sink surface; temperatures indicated by arrows come from infrared 
measurements. 

 
3. Heat sink analysis and optimization 

 
The procedure proposed in section 1.2. is applied for the analysis and optimization of the heat sink 

design. In step (a) the design parameters and their ranges are defined. They are presented in section 1.2. In 
step (b) virtual experiments are performed for the fifteen chosen heat sink designs and the numerical 
model, as presented earlier in this paper, is used for that purpose. The analyzed heat sink designs are 
described in Tab.2. The values of design variables in these experiments are selected according to the 
central composite plan for three dimensions, known from the DOE methodology, or more precisely the 
face-centered central composite design as defined by Montgomery (1997). Its graphical representation is 
shown in Fig.9.  
 
Table 2. Heat sink designs selected for virtual experiments. 
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N 7 5 5 5 5 9 9 9 9 7 7 7 7 9 7 

d 2.0 1.0 3.0 1.0 3.0 1.0 3.0 1.0 3.0 1.0 3.0 2.0 2.0 2.0 2.0 

H 30.0 20.0 20.0 40.0 40.0 20.0 20.0 40.0 40.0 30.0 30.0 40.0 20.0 30.0 30.0
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Fig.9. Face-centered central composite design plan of experiments. 
 

The experiment 01 is called center point and in Fig.9. it is displayed as a circle. In that experiment 
the medium value of each heat sink design parameter is selected. The next eight experiments are called cube 
or corner points and in Fig.9. are represented by dots. In these experiments the extreme values of each design 
parameter are combined, similar as it is in the full factorial plan at two levels. The last six experiments, 
shown in Fig.9. as crosses, are called axial or star points. The chosen values of design parameters are 
combinations of medium and extreme numbers from available ranges.  

The experimental results are shown in Tab.3. The measured value is the base plate temperature rise. 
It is computed as the difference between the mean temperature of the heat sink bottom surface and the 
ambient temperature which is 25 °C.  

In step (c) the response surface is developed and the neural network approximation is used for that 
purpose. The input variables are the number of pin fins on the base plate diagonal, the diameter of the pin fin 
at its top and the pin fin height. The output is the temperature rise of the base plate.  

The neural network is trained with the use of the results from the first nine experiments and tested 
with the results from the remaining six experiments. It is trained by application of the particle swarm 
optimization method. Two hidden layers with twelve neurons in each layer provide very good accuracy of 
the network output. The neural network error shown in Tab.3. is calculated with Eq.(3.1), where Θb is the 
heat sink base temperature rise, while CFD and NN stand for the simulation and the neural network results, 
respectively. It can be noticed that the error of the learning set is below 0.05% and the error of the testing set 
is below 2.0%. 
 

 %

NN CFD
b b

CFD
b

Error 100
 

 


. (3.1) 

 
 
 
 



Optimization of pin fin heat sink by application of CFD simulations … 377 

Table 3. Results of experiments and comparison to neural network approximation. 
 

Experiment 
N 
(-) 

d (mm) 
H 

(mm) 

CFD
b  

(K) 

NN
b  

(K) 

Error 
(%) 

01 7 2.0 30.0 70.68 70.71 0.04 
02 5 1.0 20.0 114.64 114.64 0.00 
03 5 3.0 20.0 93.67 93.65 0.02 
04 5 1.0 40.0 95.87 95.87 0.00 
05 5 3.0 40.0 73.28 73.28 0.00 
06 9 1.0 20.0 84.56 84.56 0.00 
07 9 3.0 20.0 63.74 63.74 0.01 
08 9 1.0 40.0 61.44 61.42 0.02 
09 9 3.0 40.0 48.99 48.99 0.00 
10 7 1.0 30.0 85.03 83.99 1.23 
11 7 3.0 30.0 61.68 62.80 1.81 
12 7 2.0 40.0 62.17 63.18 1.63 
13 7 2.0 20.0 83.23 83.43 0.24 
14 9 2.0 30.0 58.96 59.85 1.51 
15 5 2.0 30.0 91.80 91.41 0.42 

 
In step (d) the solution domain is explored and the optimal heat sink design is looked for. The neural 

network developed in the previous step gives an immediate response to the input signals and the computing 
of the base plate temperature rise for the large number of heat sink designs is possible. That is why the quasi-
complete search of the solution domain is performed, instead of the application of some kind of optimization 
method, e.g., gradient descent, genetic algorithm. The quasi-complete search is a full combination of the 
following design parameters: 

 number of pin fins on the base plate diagonal N equals 5, 7 or 9 (three levels) 
 top diameter of pin fin d equals: 1.0, 1.2, …., 3.0 mm (eleven levels) 
 pin fin height H equals: 20.0, 22.5, …., 40.0 mm (nine levels), 

which results in 297 cases. These different designs are compared using the temperature rise of the base plate 
as well as the array, the space claim and the mass based heat transfer coefficients – Eqs (1.1)-(1.3) 
respectively. In Figs 10-13 the results obtained are illustrated and for the chart clarity only three pin fin 
diameters are considered. 

The temperature rise of the heat sink base plate (Fig.10.), is directly correlated with selected heat 
sink design parameters. That temperature is decreased by a higher value of any of those parameters. It is 
also worth mentioning that the same temperature rise, e.g., 80.0 K, could be achieved with the heat 
skinks having different designs, i.e., characterized by a different number of pin fins, fin height and fin 
diameter.  

In Fig.11 the array heat transfer coefficient is shown. According to the assumptions the same heat is 
dissipated by all heat sinks and the size of the base plate is also constant, thus the array coefficient depends 
only on the temperature rise of the base plate. It is quite obvious that for heat sink having 9 pin fins on the 
base plate diagonal, 3.0 mm pin fin diameter and 40.0 mm pin fin height the surface for a heat dissipation is 
the largest and thus the lowest base plate temperature is obtained and the array heat transfer coefficient has 
its maximum.  

In Fig.12 the results of the space claim heat transfer coefficient are depicted. Having in mind the 
same assumptions as mentioned above, in this case the heat sink performance metrics is influenced by two 
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variables, i.e., the pin fin height and the temperature rise of the base plate. It is interesting to notice that if the 
number of pin fins and their diameter are fixed the space claim heat transfer coefficient is decreasing with the 
growth of the pin fin height. Although longer fins result in lower base plate temperature, at the same time 
more space is occupied by the heat sink. Thus, according to the space claim heat transfer coefficient the best 
heat sink design consists of a large number of short and thick pin fins, i.e., 9 pin fins on the base plate 
diagonal with the diameter of 3.0 mm and height of 20.0 mm. 

In Fig.13 the mass based heat transfer coefficient is presented. These results are the most difficult 
to analyze because all three design parameters have a direct influence on the heat sink performance 
metrics. In general, a small pin fin thickness seems to be the best choice, but that design parameter is less 
important in heat sinks having also a small number of short pin fins. It could also be noticed that 
increasing the number of pin fins on the base plate diagonal increases also the influence of the remaining 
design parameters on heat sink efficiency. Finally, design parameters of the best heat sink are: 9 pin fins 
on the base plate diagonal, the pin fin diameter of 1.0 mm and the pin fin height of 25.0 mm. It is worth 
mentioning that the best designs resulting from the array and the space claim heat transfer coefficients are 
placed at the edge of the solution domain, while the one related to the mass based heat transfer coefficient 
is positioned inside.  

 

 
 

Fig.10. Temperature rise of heat sink base plate. 
 

 
 

Fig.11. Array heat transfer coefficient. 
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Fig.12. Space claim heat transfer coefficient. 
 

 
 

Fig.13. Mass based heat transfer coefficient. 
 

In step (e), the best solutions are verified. It is required because the results from the analysis and 
optimization of the heat sink design are based on the heat sink model in the form of an artificial neural 
network and they contain the approximation error. The verification is done through creation of numerical 
models of the best heat sink designs and comparison of the base plate temperature rise calculated with the 
neural network and that obtained in CFD simulations.  

Such a comparison for the optimum design resulting from the array and the space claim heat transfer 
coefficients is already made in Tab.3., as all these designs were included in the neural network training set – 
experiment 09 and experiment 07, respectively. The CFD simulations of the best design for the mass based 
heat transfer coefficient were made separately and the obtained error was equal to 0.03%. 

 
4. Summary  

 
The influence of selected design parameters on the cooling efficiency of a polymer made pin fin heat 

sink is analyzed. The following design parameters are considered: the pin fin top diameter, the pin fin height 
and the number of pin fins. The optimum design is searched regarding various metrics of the heat sink 
cooling efficiency and a neural network model of the heat sink thermal performance is utilized for that 
purpose. The neural network model is developed basing on the results from a limited number of experiments 
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in which selected designs of the heat sink are tested. The experiments are performed by applying a validated 
and verified numerical model of the heat sink, thus manufacturing of the real specimens is not required. 

 
Nomenclature 

 
 d – top diameter of pin fin, [m] 
 E – total energy, [J] 
 F – force, [N] 
 g – gravitational acceleration, [m/s2] 
 H – height of the pin, [m] 
 h – heat transfer coefficient, [W/m2K] 
 h – enthalpy, [J/kg] 
 J – mass flux or diffusion flux, [kg/m2s] 
 k – thermal conductivity, [W/mK] 
 L – length of array, [m] 
 M – molecular weight, [kg/kgmol] 
 N – number of pins on base diagonal, [-] 
 p – pressure, [Pa] 
 q – heat sink cooling rate, [W] 
 R – gas law constant, 8.31447103 [J/kgmolK] 
 S – mass or energy source, [kg/m3s] or [J/kgmolK] 
 T – temperature, [K] 
 t – time, [s] 
 v – velocity, [m/s] 
 V – volume, [m3] 
 W – width of the pin array, [m] 
  – excess temperature, [K] 
  – density, [kg/m3] 
   – stress tensor, [Pa] 
 
Subscripts 
 
 A – array 
 b – base of fin array 
 eff – effective 
 M – mass 
 p – pin fin 
 SC – space claim 
 T – total 
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