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In the present work the linear stability analysis of double diffusive convection in a binary fluid layer is 
performed. The major intention of this study is to investigate the influence of time-periodic vertical vibrations on 
the onset threshold. A regular perturbation method is used to compute the critical Rayleigh number and wave 
number. A closed form expression for the shift in the critical Rayleigh number is calculated as a function of 
frequency of modulation, the solute Rayleigh number, Lewis number, and Prandtl number. These parameters are 
found to have a significant influence on the onset criterion; therefore the effective control of convection is 
achieved by proper tuning of these parameters. Vertical vibrations are found to enhance the stability of a binary 
fluid layer heated and salted from below. The results of this study are useful in the areas of crystal growth in 
micro-gravity conditions and also in material processing industries where vertical vibrations are involved.  
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1. Introduction 
 
 Double diffusive convection (DDC) occurs when two diffusing components (e.g., temperature and 
dissolved concentration) contribute to the buoyancy. This is most commonly observed in the layer of a 
binary fluid mixture heated from below. The problem of DDC in a fluid layer has received significant 
interest during the past few decades because of its wide spread applications, such as convective heat and mass 
transfer, solidification of binary mixtures, migration of solutes in water-saturated soils and the migration of 
moisture through air contained in fibrous insulations and so on. Some of the areas where DDC finds exhaustive 
applications include oceanography, astrophysics, geophysics, geology, chemistry, and metallurgy. The problem 
of DDC in a fluid layer has been extensively investigated both theoretically and experimentally (see e.g., 
Turner, 1973; 1974; 1985; Huppert and Turner 1981; Platten and Legros, 1984; and the references therein). 
 The study of thermal convection induced by oscillating forces which arise due to either oscillating 
wall temperatures or complex body forces or a combination of these two has received much attention in the 
fluid dynamics research community. The complex body forces can arise in a number of different ways, for 
instance, when a system with a density gradient is subjected to harmonic vertical vibrations, the resulting 
buoyancy forces will have a complex spatio-temporal structure. The other situations where the gravity 
fluctuation becomes predominant include buoyancy-driven convection in microgravity conditions occurring 
in space laboratory experiments, crystal growth, petroleum production, and large-scale atmospheric 
convection. Owing to several unavoidable sources of residual acceleration experienced by a spacecraft, the 
gravity field in an orbiting laboratory is not constant in a micro-gravity environment, but is a randomly 
fluctuating field which is referred to as g-jitter. The vibrations can either substantially enhance or retard heat 
transfer and thus drastically affect convection (see e.g., Wadih and Roux, 1988). The effect of gravity 
modulation on a convectively stable configuration can significantly influence the stability of a system by 
increasing or decreasing its susceptibility to convection. In general, a distribution of a stratifying agency that 
is convectively stable under constant gravity conditions can be destabilized when a time-dependent 
component of the gravity field is introduced.  
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 The effect of gravity modulation on the stability of a heated fluid layer was first examined by Gresho 
and Sani (1970) and Gershuni et al. (1970). Murray et al. (1991) considered the effect of gravity modulation 
on the onset of convection for the unidirectional solidification problem. Saunders et al. (1992) studied the 
effect of gravity modulation on the stability of a horizontal double-diffusive layer. Clever et al. (1993) 
studied the problem of two dimensional oscillatory convection in a gravitationally modulated fluid layer. 
Farooq and Homsy (1996) investigated linear and nonlinear convection in a vertical slot in the presence of 
gravity modulation. Malashetty and Padmavathi (1997) studied the effect of small amplitude gravity 
modulation on the onset of convection in the fluid and porous layers. Li (2001) performed a stability analysis 
of modulated-gravity-induced thermal convection in a heated fluid layer subject to an applied magnetic field. 
Shu et al. (2005) examined the effect of modulation of gravity and thermal gradients on natural convection in 
a cavity numerically and experimentally. An experimental study on the response of Rayleigh-Benard 
convection to gravity modulation was carried out by Rogers et al. (2005). 
 Yu et al. (2007) made an experimental investigation of a horizontal stably stratified fluid layer, 
including its subsequent nonlinear evolution under steady and modulated gravity, using two-dimensional 
numerical simulations. Dyko and Vafai (2007) investigated the effect of gravity modulation on convection in 
an annulus between two horizontal coaxial cylinders. Zenkovskaya and Rogovenko (1999) investigated 
filtration convection subject to high frequency oscillations in an arbitrary direction using the averaging 
method. Malashetty and Swamy (2011) asymptotically analyzed the linear stability of a rotating horizontal 
fluid and fluid-saturated porous layer heated from below for the case of small-amplitude gravity modulation.  
 The main objective of this article is to analyze the effect of small amplitude gravity modulation on 
the onset of a binary fluid layer for a wide range of values of frequency of the modulation, solute Rayleigh 
number, Lewis number, and Prandtl number. It is believed that the results of this study are useful in the areas 
of crystal growth in micro-gravity conditions and in material processing industries where vertical vibrations 
are involved.  
 
2. Formulation of the problem 
 
 An initially quiescent infinite horizontal binary fluid layer of height d in the presence of harmonic 
vertical vibrations is considered, so that the gravity varies periodically with time. Thus, 
 

  � �, , ( )0 0 g t� �g ,       where      � �( ) cos0g t g 1 t� � � 	 ,  
 
with 0g  the constant gravity in an otherwise unmodulated system. A Cartesian reference frame is chosen 
with the origin in the lower boundary and the z-axis vertically upwards. The temperatures lT  and uT  with 

l uT T
  and solute concentrations lS  and uS  with l uS S
  are maintained respectively on lower and upper 
impermeable, stress-free, isothermal and isohaline boundaries held at z = 0 and z = d. Under Boussinesq 
assumption, the basic governing equations are 
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 The basic state is assumed to be quiescent so that 
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 To study the stability, one can superpose infinitesimal perturbations on the basic state. Then 
 

  , ( ) , ( ) , ( ) , ( ) +b b b b bp p z p z T T z T S S z S� � � � �� � � � � � � �� � � �q q q .      (2.10) 
 
 The basic governing equations are then simplified and the product terms in perturbation variables are 
neglected to obtain 
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 Here k denotes the unit vector in the z-direction. The boundaries are assumed to be stress-free, 
isothermal and isohaline so that  
 
  2 2w w z T S 0� � � �� 
 
 � � �            at             z = 0              and             d.  (2.15) 
 
 By operating double curl on Eq.(2.12) we eliminate p�  and then make all equations non-dimensional 
by scaling length, time, velocity, pressure, temperature and solute concentration, respectively, with 

, , , , and2 2
T T Td d d d T S� �� ���   , to obtain 
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 Further, the boundary conditions (2.15) become 
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 Coupling between Eqs (2.16)-(2.18) is resolved to obtain  
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 Then the boundary conditions (2.19) become 
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 According to the normal mode technique disturbances can be expressed as  
 
  ( )( , ) .i lx my tw W z t e � �!�                          (2.22)  
 
 Here � �,W z t  is a periodic function of time with the same period as the gravity modulation

r ii! � ! � ! is the growth rate of the disturbances. Here we consider only the synchronous mode � �i.e., 0! �
Then Eqs (2.20)-(2.21) yield 
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and  2 4 6 8W D W D W D W D W 0� � � � �               at                , ,z 0 1�               (2.24)  
 
with D z� 
 
 . This is an eigenvalue problem with eigenvalue RaT  and eigenfunctions W.  
 
3. Perturbation method 
 
 The gravity field under the influence of vibrations deviates from the constant gravity field by a small 
quantity � . Since the above eigenvalue problem contains this small parameter �  by the theory of small 
perturbations one can expand the eigenfunctions W  and eigenvalue RaT  in the form of a perturbation series  
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  � � � � � � � �, Ra , , , .2
T 0 0 1 1 2 2W W R W R W R� � � � � � ���                                       (3.1) 

 
 Here 0W  and 0R  are respectively the eigenfunctions and eigenvalues of the unmodulated system and 

iW  and � �,iR i 1$  are the corrections to 0W  and 0R in the presence of gravity modulation. 
 A substitution of Eq.(3.1) into Eq.(2.23) and comparison of corresponding terms, results in 
 

  0LW 0� ,  (3.2) 
 

  cos sin Ra cos2 2 2
1 0 3 0 1 3 S 2 0LW a R L tW a R L z a L tW� � 	 � % � 	 ,       (3.3) 

 

  

cos cos

Ra cos

2 2 2 2
2 1 3 0 2 3 0 0 3 1 1 3 1

2
S 2 1

LW a R L tW a R L W a R L tW a R L W

a L tW

� � 	 � � 	 � �

� 	
 (3.4) 

 
where   � � Ra2 2 2 2

1 2 3 0 3 S 2L L L L D a a R L a L� � � � ,  

 

  � � � �Pr 1 2 2
1L t D a�� 
 
 � � ,       � �2 2

2L t D a� 
 
 � � ,      � �1 2 2
3L t Le D a�� 
 
 � � . 

  
 Each of iW  is required to satisfy the boundary conditions (2.24). Equation (3.2) obtained at zeroth 
order is the one used in the study of DDC in a fluid layer with a constant gravity field. A marginally stable 
solution of that problem is sin0W z� %  and the corresponding eigenvalue is 
 

  � �Ra Le ,
32 2 2

0 SR a a� � % �              (3.5)  

 
which assumes the minimum value 0cR  for 0a a� , obtained by solving  
 

  � � � � .
2 32 2 2 2 2

0 0 03a a a 0% � � % � �                                         (3.6) 

 
 These are the classical results obtained for DDC in a binary fluid layer (Turner, 1973). Further, these 
equations yield the values .4

0cR 27 4 657 5� % �  and 0a 2� % , for RaS 0�  which are associated with the 
classical Rayleigh-Benard problem (Chandrasekhar, 1981). 
 On substituting the zeroth order solution into Eq.(3.3) one can get, 
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where 2

2L i� & � 	� , Le2 1
3L i�� & � 	� , 2 2 2a& � % � . The above equation is inhomogeneous and its solution 

poses a problem, because of the presence of resonance term. The mathematical properties and solvability 
conditions of the differential equations with time periodic coefficients have been extensively discussed by 
Yakubovich and Starzhinskii (1975). If this equation is to have a solution, the right-hand side must be 
orthogonal to the null space of the operator L. This requires that the steady part of the right-hand side must 
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be orthogonal to its steady state solution 0W , i.e., sin z% . Since cos t	  varies sinusoidally with time, the 

only steady term is Le sin2 2 1
1a R z�� & % , so that  

 

  � �Le sin sin
1 2 2 1
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a R z z dz 0�� & % % �' ,  

 
which gives � �. Le2 2 1

10 5 a R 0�� & � , indeed 1R 0� . This in turn implies that all the odd coefficients, viz., 
, , ...1 3R R  in Eq.(3.1) are zero because a change of the sign of �  shifts the time origin by half period but 

does not change the physical problem. Now Eq.(3.12) is solved by inverting the operator L term-by-term. 
Consequently, 
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 With the zeroth and first order solutions, Eq.(3.4) now looks like  
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where 2
2 nL 2i� & � 	�� , 2

3 nL 2i� & � 	�� . The aim of Eq.(3.9) is merely to find 2R , the first non-zero correction 
to RaT  which characterizes the influence of g-jitter. The solvability condition of Eq.(3.9), i.e., the time-
independent part of right-hand side must be an orthogonal steady state solution, gives, 
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where the over bar indicates the time average. Now, from Eq.(3.8), one can obtain 
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 The time-average is computed by using Eqs (3.8) and (3.7) and then the resultant of Eq.(3.11) is 
substituted into Eq.(3.10) to obtain  
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with � �Le Ra2 1

3 0 SB R�� & � , Ra4 S 0B R� � . If desired Eq.(3.9) could now be solved for 2W , and the 

procedure may be continued to obtain further corrections to W and RaT . However since we required to estimate 
only the first non-trivial correction to RaT , we shall stop at this step. The value of RaT  obtained by this 
procedure is the eigenvalue corresponding to the eigenfunctions W , which, though oscillating, remains bounded 
in time. Since RaT  is a function of the wave number a and the amplitude of modulation � , accordingly we 
expand 
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where 0R  and 0a  are respectively the Rayleigh number and wave number for the unmodulated system. RaT  
as a function of the wave number a  has a least value RaTc  which occurs at ca a�  and the critical wave 
number occurs when RaT a 0
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 The critical thermal Rayleigh number is then given by 
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 However, on equating the coefficients of like powers of �  on both sides of Eq.(3.16) we get 
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so that  
 
  � � � � � �Ra , .2

Tc 0 0 2 0a R a R a� � � � � ���                                                   (3.18) 
 
 It is only when one wishes to evaluate 4R , 2a  must be taken into account (Venezian, 1969). If

� �
02c 2 a aR R ��  is positive, the g-jitter stabilizes the system, while if 2cR  is negative, the effect of vibration 

is destabilizing. The influence of 2cR  relative to 0cR  is revealed in terms of 2c 0cR R . 
 
4. Results and discussion  
 
 The onset of DDC in a fluid layer subject to a time-periodically varying gravitational force, is 
investigated analytically using the linear stability theory. Due to g-jitter there is a shift in the onset criteria. 
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The critical Rayleigh number and the wave number are computed using the regular perturbation 
technique based on the assumption that the amplitude of imposed modulation is very small. Because of 
this the present analysis is restricted only to the first order correction to the critical Rayleigh number, 
viz., 2cR . The influence of various governing parameters on the onset of DDC is revealed through Figs 
1-3. 
 When 	  is very small, the period of modulation becomes sufficiently large and the disturbances 
grow to a large extent and therefore, the entire system under consideration becomes unstable. This is 
justified by the magnitude of 2cR , which is found to be sufficiently small or even negative in some cases. 
On the otherhand, when 	  is very large the effect of gravity modulation is confined only to a narrow 
boundary layer near the boundary. This is due to the fact that the high frequencies correspond to 
renormalization of the static gravity field. Thus, outside this thickness the buoyancy force takes a mean 
value tending towards the equilibrium sate value of the unmodulated case. Therefore, the value of 2cR  
approaches asymptotically to zero. Hence the effect of gravity modulation is significant only for the 
moderate values of	 . 
 The variation of 2cR  with 	  is revealed through Figs 1-3. It is observed that 2cR  is negative for 
small 	  while for moderate values of 	 , there is a considerable increase in the value of 2cR . Thus, the low 
frequency gravity modulation destabilizes the system whereas enhances the stability when 	  is quite large. 
The system becomes most stable when 2cR  attains a maximum value corresponding to a specific frequency 

*	�	 . If 	  is increased beyond *	 , we notice that 2cR  goes on decreasing and becomes independent of 
	  when the frequency is sufficiently large. Thus, the critical Rayleigh number tends to its equilibrium value 
of unmodulated state since 2cR tends asymptotically to zero. 
 The influence of RaS  on the gravity modulated binary fluid layer is displayed in Fig.1. When 
RaS 0� , the variation of 2cR is found to be similar to that of a single component case. In this case 2cR  is 
positive over the entire range of values of 	 . This indicates the stabilizing effect of gravity modulation on 
the onset of thermal convection in a viscous fluid layer. However, when RaS 01 , cR2  is negative for small 
values of 	 . Thus the presence of a second diffusing agent, namely, the solute concentration leads the 
gravity modulation to advance the convection as compared to the unmodulated case. For a moderate 
frequency the stabilizing effect is noticed and at *	�	 , the system becomes most stable due to both gravity 
modulation and the solute gradient. Further it is found that *	  increases with RaS . 
 In Fig.2 the effect of Le on the stability of the binary fluid layer is exhibited. In the DDC 
experiments the most common solutes used with water are sugar and salt. The value of Le is 83 and 243 
respectively for water-salt and water-sugar mixture (Bejan, 1993). Therefore, we consider a range 0-300 for 
the values of Le to encompass a variety of binary mixtures. The role of Le is to stabilize the system. The 
frequency *	  at which the system is most stable is independent of Le. When Le = 0, we observed that cR2  is 
negatively very small over the entire domain of 	 . Thus in this case the gravity modulation shows a very 
weak destabilizing effect. Figure 3 depicts the variation of cR2  with 	  for different values of Pr. It is 
reported that the influence Pr is to enhance the stabilizing effect of RaS  and Le. This figure also indicates 

that *	  increases with Pr.  
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Fig.1. Variation of 2cR  with 	  for different values of Ra .s  

 

 
 

Fig.2. Variation of 2cR  with 	  for different values of Le. 

0

200

400

600

800

1000

-1 0 1 2 3 4 5 6

 RaS = 0
 RaS = 50
 RaS = 100
 RaS = 500
 RaS = 1000
 RaS = 5000

R2c
 / R0c

	

0

200

400

600

800

1000

0 2 4 6 8 10 12 14 16

0

200

400

600

800

1000

-0.070 -0.035 0.000
R2c / R0c

	

 

 

Le = 0

  Le = 0
  Le = 10
  Le = 50
  Le =100
  Le =200
  Le =300

R2c / R0c

	



908  M.S.Swamy 

 
 

Fig.3. Variation of 2cR  with 	  for different values of Pr. 
 
5. Conclusions 
 
 The onset of gravity modulated DDC in a binary fluid layer is investigated analytically. The 
variation of correction of the Rayleigh number with frequency of g-jitter is shown graphically. The effect of 
g-jitter is significant only for small and moderate values of 	 , while as2cR 02 	2( . In general, 2cR  
is positive over the entire realm of 	 , indicating the inhibition of DDC as compared to the unmodulated 
system. However, for very small frequency cR2  is found to be negative. Le and Pr reinforce the stabilizing 
effect of g-jitter and RaS . When Le = 0, g-jitter shows a very weak destabilizing effect. The system becomes 

most stable at a specific frequency *	�	  and *	  increases with RaS  and Pr and it is independent of Le. 
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Nomenclature 
 
 a    – overall horizontal wave number, 2 2l m�  
 Le  – Lewis number, T S� �  
 l, m  – wave numbers in x- and y-direction   
 Pr   – Prandtl number, /3 �  

 p   – pressure 
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 q   – velocity vector, � �, ,u v w  

 RaS   – solute Rayleigh number, � � 3
S l u Tg S S d� � 3�  

 RaT   – thermal Rayleigh number, � � 3
T l u Tg T T d� � 3�  

 S  – solute concentration 
 T   – temperature 
 t   – time 

, ,x y z   – space coordinates 

 �   – expansion coefficient 

 �   – amplitude of modulation 

 �   – diffusivity 

 �   – dynamic viscosity 
 3   – kinematic viscosity 

 �   – density  

 	   – dimensionless frequency of modulation, 2
Td	 �  

 	   – frequency of modulation,  

 
2
1�   – 2 2 2 2x y
 
 � 
 
  

 
2�   – 2 2 2

1 z� � 
 
  
 
Subscripts/Superscripts 
 
 '  – perturbed quantity 
 b   – basic state 
 c   – critical 
 0   – reference value 
 S   – solute 
 T   – thermal 
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