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The present paper deals with the unsteady motion of an MHD free convection flow of an incompressible non-
Newtonian viscoelastic fluid past an infinite vertical plate in the presence of a heat source and Soret effect. A 
parametric study illustrating the influence of various parameters on the temperature, velocity as well as on the 
skin-friction and rate of heat transfer is conducted. The results of the effect of the magnetic field, the parameter 
describing the non-Newtonian behavior, and the velocity of suction and injection on both the velocity and 
temperature distributions are examined and shown graphically. 
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1. Introduction 
 
 Magnetohdrodynamics (MHD) is currently undergoing a period of great extension and 
differentiation of subject matter. The interest in these new problems originates from their importance in 
liquid metals electrolytes and ionized gas. The MHD heat and mass transfer processes are of interest in 
power engineering, metallurgy astrophysics and geophysics. On account of their varied importance, these 
flows have been studied by several authors notable amongst them are Shercliff (1965), Ferraro and Plumbton 
(1966) and Cramer and Pai (1973). Elbashbeshy (1997) studied heat and mass transfer along a vertical plate 
in the presence of a magnetic field. Singh (2001; 2003) analyzed an MHD free convection and mass transfer 
flow with a heat source and thermal diffusion combined with heat and mass transfer in an MHD free 
convection from a vertical surface was studied by Chein (2004). The effect of Hall current on the fluid flow 
with variable concentration has many application in MHD power generations, in several astrophysical and 
metrological studies as well as in flow of plasma through MHD generators. From the point of application, 
model studies on the Hall effect on free and forced convection flows have been made by several 
investigators. Katagiri (1969) studied the effects of Hall current on the magneto hydrodynamic boundary 
layer flow past a semi infinite vertical plate. Pop and Soundalgekar (1974) and Gupta (1975) investigated the 
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effect of Hall current on the steady hydromagnetic flow in an incompressible viscous fluid. Hossain and 
Rashid (1987) discussed the effect of Hall current on a steady free convection flow along porous plate in the 
presence of foreign gases such as H2 ,CO2 and NH3 subjected to a transpiration velocity inversely 
proportional to a square root of time. Acharya (2001a; 2001b) analyzed the Hall effect with simultaneous 
thermal and mass diffusion on an unsteady hydromagnetic flow past a vertical plate. Assuming constant 
suction injection normal to the plate they solved the problem analytically. Abeldahab and Elbrbary (2001) 
discussed heat and mass transfer along a vertical plate under the combined buoyancy force effects of thermal 
and species diffusion in the presence of a transversely applied magnetic field and taking the Hall effect into 
account. The Hall effect on an MHD free convection flow of a viscous incompressible fluid past an vertical 
plate in porous medium with heat source/sink was discussed by Sharma et al. (2007). 
 Recently, researchers in engineering and scientific fields have shown great interest in the study of a 
non-Newtonian fluid due to its importance in industrial processes. Many authors have examined the flow, 
heat and mass transfer in non-Newtonian fluids of different types. Sarpakaya (1961) discussed the steady 
flow of a uniformly conducting non-Newtonian incompressible fluid between two parallel plates. The fluid 
considered is under the influence of a constant pressure gradient. Chaudhary and Jain (2006) analyzed the 
Hall effect on an MHD mixed convection flow of a viscoelastic fluid past an infinite vertical porous plate 
with mass transfer and radiation. Chaudhary and Jha (2008) discussed heat and mass transfer in an elastico-
viscous fluid past an impulsively started infinite vertical plate with the Hall effect. 
 In all above studied, the thermal-diffusion effects are negligible. However, the thermal-diffusion 
effects, which are caused by the temperature gradient (called the Soret effect) is an interesting 
macroscopically physical phenomenon in fluid mechanics. Usually, in heat and mass transfer problems the 
variation of density with temperature gives rise to the considered buoyancy effect under natural convection 
and hence the temperature will influence the diffusion species. Alam et al. (2006) studied the Soret Dufour 
effect on a steady MHD combined free –forced convection and mass transfer flow past a semi-infinite 
vertical plate. Pal and Mondal (2011a; 2011b) examined the effect of Soret and Dufour on an MHD non-
Darcy unsteady mixed convection heat and mass transfer over a stretching sheet. 
 
2. Mathematical formulation 
 
 The constitutive equations for the rheological equation of state for an elastic-viscous fluid (Walters’ 
liquid B’) are 
 

  ,ik ik ikp pg p                                                                     (2.1) 
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  N   is the distribution function of relaxation times, in the above equation pik  and p are, 

respectively, the stress tensor an arbitrary isotropic pressure, gik is the metric tensor of a fixed co-ordinate 

system xi and  1
ike  is the rate of strain tensor. It was shown by Walters (1964) that Eq.(2.2) can be put in the 

following generalized form which is valid for all types of motion and stress 
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where x1  is the position at time t’ of the element that is instantaneously at the point x’ at time “t”. The fluid with 
equation of state (2.1) and (2.4) has been designated as liquid B’ in the case of liquids with short memories, i.e., 
short relaxation times, the above equation of state can be written in the following simplified form 
 

     
 

, ,
1 ik

1 ikik
0 0

e
p x t 2 e 2k

t


  


                                                       (2.5) 

 

in which  0

0

N d


     is limiting viscosity at small rate shear, 
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0

k N d
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t




denotes the convected time derivative. 

 
 We consider the unsteady flow of a viscous incompressible and electrically conducting elasto-
viscous fluid with oscillating temperature and concentration, the flow occurs along the x-axis which is taken 
to be along the plate and the y-axis is taken normal to it. The plate starts moving in its own plane with 
uniform velocity v0 (a constant velocity). A uniform magnetic field is applied normal to the plate with 
constant suction. The equations governing the flow of the fluid are as follows 
 Equation of continuity 
 
  .V 0                                                                                                (2.6) 
 
 Momentum equation 
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 Generalized Ohm’s law  
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where v=(u, v, w) is the velocity field, P is the pressure field, g is acceleration due to gravity, β the 
volumetric coefficient of thermal expansion, β* the volumetric coefficient of volume expansion for mass 
transfer ρ the density of the fluid, J is the current density, M is the magnetic field, E is the electric field and 
pij is the stress tensor. The effect of Hall current induces a force which causes a cross flow in the z –direction, 
therefore the flow becomes three dimensional. It is assumed that there is no applied or polarization voltage so 
that E=0 and the induced field B=(0, B0 , 0), where B0 is the applied magnetic field parallel to the y-axis. This 
assumption is justified when the magnetic Reynolds number is very small. 
 The generalized Ohm’s law including Hall current is given in the form 
 

   e e
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0 e
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J p
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where e  is the electron frequency, e is the electron collision time, J is the electron conductivity, ep  is the 

electron pressure and en  is the number density of electron. For weakly ionized gases the thermoelectric 
pressure and ion slip are considered negligible. Then Eq.(2.9) reduces to 
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where u, v and w are x, y and z components of velocity vector, respectively, is the Hall parameter defined by 

.e em     
 As the plate is of infinite length all the physical variables in this problem are functions of y and t. 
Boussinesq approximation equations governing the flows are as follows 
equation of continuity 
 

  ,
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0
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                                                                       (2.12) 

 
V=-v0 where v0 is the constant suction velocity; 
momentum equation 
 

  
 
     * ,
22 3
0

02 2 2

B u mwu u u u
v v k g T T g C C

t y y y t 1 m
 

    
         

      
        (2.13) 

 

  
 
 

,
22 3
0

02 2 2

B w muw w w w
v v k

t y y y t 1 m

    
   

      
                                    (2.14) 

 
energy equation  
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concentration equation 
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                                                          (2.16) 

 
where ν is the kinematic viscosity, k0 is the elastic parameter, T is the temperature, C is the concentration, k  
is the thermal conductivity, pc is the specific heat of the fluid and g is the acceleration due to gravity, s is the 

heat source parameter and DT  is the Soret- Duffer effect coefficient. In Eq.(2.15) the terms due to viscous 
dissipation are neglected and in Eq.(2.16) the term due to the chemical reaction is assumed to be absent. 
 The initial boundary conditions are 
 
   , ( , ) , , , for all ,t 0 u y t w y t 0 T 0 C 0 y      
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where ω is the frequency of oscillation, and subscripts w and   denote the physical quantities at the plate 
and in the free stream, respectively. 
 We introduce the following non-dimensional quantities as follows 
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 Equations (2.13) to (2.16) transform to the following non-dimensional forms, respectively (dropping 
the bars) 
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3. Solution 
 
 Equations (2.19) and (2.20) can be combined using the complex variable 
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 Equations (2.19)-(2.20) 
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 Using Eq.(3.1) we get the boundary condition 
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 Putting    , i tt e f     in Eq.(2.21), we get 
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 Equation (3.4) can be solved under the following boundary conditions, 
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 Putting    , i tC t e g    in Eq.(2.23), we have 
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 Equation (3.8) can be solved under the boundary conditions 
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 Separating Eq.(3.9) the real and imaginary parts and considering only the real part, we get 
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 Also substituting  i te F    in Eq.(3.2), we arrive at 
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 The equation can be solved under the boundary conditions 
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 If 1  and 2  are the axial and the transverse components of the skin-friction respectively, then 
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 Similarly, shearing stress at the wall along the z-axis is given by 
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 The rate of heat transfer in terms of the Nusselt number is given by 
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 The rate of mass transfer is given by 
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 The coefficient of mass transfer, which is generally known as the Sherwood number Sh is given by 
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4. Result and discussion 
 
 The effect of Hall current on an MHD free convection flow of a elastico-viscous fluid past an 
impulsively started infinite vertical plate with mass transfer has been studied in the preceding sections. In 
order to get a physical insight into the problem, the velocity, temperature, concentration fields, shear stress, 
rate of heat and mass transfer have been discussed by assigning a numerical value to M (magnetic 
parameter), m (Hall parameter), α (non-Newtonian parameter), Sc (Schmidt number) and Ω (frequency 
parameter). The values of the Prandtl number (Pr), are taken equal to 3 and 10 which represent a saturated 
liquid (Freon cF2 cℓ2) at 272.30 K and gasoline 1 atm, pressure and 200C respectively. The value of the 
Grashof number (G) and modified Grashof number (Gc) are taken equal to 5 and 2 respectively. 
 Figures 1, 2 depict the variation of the velocity component u, for G=5.0, Gc=2.0 and Pr=3 taking 
different values of m and M. It is observed that an increase in the Hall parameter (m=ωe τe) leads to a rise in 
the velocity while a reverse effect is observed for the applied magnetic field (M) for both Newtonian and 
non-Newtonian fluids. Figure 3 shows the variation of velocity with Sc. The velocity is greater for ammonia 
(Sc=0.78) than for helium (Sc=0.30). It can be seen that as Sc is increases velocity decreases. Figures 4 and 5 
exhibit the change of behavior of the velocity component u against η under the effect of the frequency 
parameter, Soret number and Hall parameter respectively. An increase in frequency increases the velocity. 
From Fig.5 it is clear that an increase in the applied Soret number decreases the velocity. Figures 6, 7 and 8 
show the velocity profile for Pr (Prandtl number), S (heat source parameter), α (non-Newtonian parameter). 
It can be seen that velocity decreases as Pr increases whereas with an increase in S velocity decreased. It is 
also noticed that velocity for the Newtonian fluid (α=0) is greater than for the non-Newtonian fluid (α≠0). 
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            Fig.1. Effect of Hall current parameter on u.            Fig.2. Effect of magnetic field parameter on u. 
 

                                
 
          Fig.3. Effect of Schmidt number parameter on u.           Fig.4. Effect of frequency parameter Ω on u. 
 

                              
 

             Fig.5. Effect of Soret number parameter on u.                  Fig.6. Effect of Prandtl number on u. 
 

                                      
 

           Fig.7. Effect of heat source parameter on u.                 Fig.8. Effect of non-Newtonian parameter α on u. 
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 Figures 9, 10, 11, 12 represent the velocity component w, for G=5, Gc=2 and Pr=3. An increase in 
the applied magnetic field (M), Schmidt number (Sc) and frequency (Ω) decreases the velocity in the z-
direction for both the fluids, whereas an increase in the Hall parameter (m) increases the velocity. Further it 
is noticed that w-component of velocity of the Newtonian fluid is lower than that of the elasticoviscous fluid. 
Figures 13, 14, 15 demonstrate the variation of the Soret number (So), non-Newtonian parameter (α) and 
heat source parameter (S) against η. As we can see w increases when So decreases. The increasing value of α 
causes w decreases while velocity increases as S decreases. 
 

                      
 

      Fig.9. Effect of magnetic field parameter on                      Fig.10. Effect of Schmidt number on 
                velocity component w.                                                        velocity component w. 
 

                     
 

          Fig.11. Effect of frequency parameter Ω                       Fig.12. Effect of Hall current parameter  
                      on velocity component w.                                            on velocity component w. 
 

                         
 

        Fig.13. Effect of Soret number parameter                    Fig.14. Effect of non-Newtonian parameter 
                    on velocity component w.                                           on velocity component w. 

Sc=.33, .6, .78 
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Fig.15. Effect of heat source parameter on velocity component w. 
 
 The temperature profiles are shown in Figs 16, 17. The effect of frequency parameter Ω and heat 
source parameter S on temperature field θ against η are shown, respectively. Figure16 depicts the variation in 
temperature. It can be seen that temperature decreases as the value of S increases. The variation for Ω is 
shown in Fig.17. It is observed that temperature increases as Ω increases. The temperature profiles are shown 
in Fig.18 for Pr=3 and 7. The temperature distribution decreases with an increase in Pr. 
 

             
 
 Fig.16. Effect of heat source parameter on temperature.   Fig.17. Effect of frequency parameter on temperature. 
 

 
 

Fig.18. Effect of Prandtl number parameter on temperature. 
 
 Figure 19 presents the concentration profiles for helium (Sc=0.30) and ammonia (Sc=0.78). We 
noticed that increasing the value of Sc decreases the concentration profiles. This is consistent with the fact 
that on increase in Sc means a decrease of molecular diffusivity D that results in a decrease of concentration 
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boundary layer. Hence concentration of the species is higher for small values of Sc and lower for larger 
values of Sc. From Fig.20 it is inferred that C increases as So increases whereas from Fig.21 we notice that C 
increases sharply for a small value of η and then again declines steadily as  , for any value of So and 
m. Further, the Soret effect on C is negligible near the plate-surface and is marked at large distances from the 
plate-surface. A rise in so causes a greater chemical thermal diffusivity at the plate’s surface. Hence, C rises 
as So increases. 
 The shearing stress along the x-axis τ1 is shown in Fig.22 for different values of So  and the elastic 
parameter α. It is observed that there is a rise in τ1 with increasing the Soret number but it falls with 
increasing α. 
 

                 
 
   Fig.19. Effect of Schmidt number parameter                   Fig.20. Effect of Soret number parameter  
              on concentration.                                                           on concentration. 
 

             
 
Fig.21. Effect of Hall effect number parameter on concentration.     Fig.22. Variation of shearing stress τ1 for S. 
 
 Figure 23 illustrates the shearing stress along the z-axis (τ2). From this we concluded that for the 
non-Newtonian fluid τ2 is greater than for the Newtonian fluid. However, an increase in So and α increases 
the skin friction τ2. Here it is also concluded that the values of τ1 and τ2 increase with the increase in the Hall 
parameter (m). Likewise the effect of the heat source parameter on the Nusselt number is elucidated in 
Fig.24. It can be noticed that the Nusselt number noticeably decreases as S increases. In Fig.25 the effect of 
the Soret number parameter on the Sharewood number is observed. It is noticed that Sh increases as So 
increases. 
 



Influence of Soret effect on MHD mixed convection …  93 

         
 
   Fig.23. Variation of shearing stress τ2 for S.                        Fig.24. Variation of Nusselt number for different 
                                                                                                values of heat source parameter. 
 

 
 

Fig.25. Variation of Sherwood number for different values of Soret number. 
 
Nomenclature 
 
 0B   – intensity of the applied magnetic field 

 C  – dimensionless species concentration of the fluid 
 Cp  – specific heat at constant pressure 
 C   – species concentration far away from the plate 

 C   – species concentration of the fluid at the plate 

 D  – coefficient of chemical molecular mass diffusivity 
 DT  – coefficient of chemical thermal diffusivity 
 E  – electron charge 
 Er  – electric field 
 Gc  – Grashof number for mass transfer 
 Gr  – Grashof number for heat transfer 
 g  – acceleration due to gravity 
 Jr  – electric current density 
 k  – permeability of the porous medium 
 M  – magnetic field parameter (Hartmann number) 
 m  – Hall parameter 
 Pr  – Prandtl number 
 pe  – electron pressure 
 S  – source parameter 
 Sc  – Schmidt number 



94  A.K.Jha, K.Choudhary and A.Sharma 

 So  – Soret number 
 T  – temperature of the fluid in the boundary layer 
 T   – fluid temperature far away from the plate 

 t  – time 
 u  – x-component of the velocity vector 
 Vr  – velocity vector 
 0V   – reference velocity 

 W  – z-component of Vr 
 α  – non-Newtonian parameter 
 β  – coefficient of volume expansion for heat transfer 
    – coefficient of volume expansion for mass transfer 

 ρ  – fluid density in the boundary layer 
 υ  – kinematic viscosity 
 σ  – electrical conductivity 
 κ  – thermal conductivity 
 θ  – dimensionless temperature 
 φ  – frictional heat 
 Ω  – non-dimensional frequency parameter 
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