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A nonperturbative approximate analytic solution is derived for the time fractional Fokker-Planck (F-P) 
equation by using Adomian’s Decomposition Method (ADM). The solution is expressed in terms of Mittag-
Leffler function. The present method performs extremely well in terms of accuracy, efficiency and simplicity. 
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1. Introduction  
 
 Recently, a great deal of interest has been focused on Adomian’s Decomposition Method (ADM) 
and its applications to a wide class of physical problems containing fractional derivatives (Rida and 
Sherbiny, 2008; Saha Ray et al., 2008; Datta, 2007; Kaya, 2006; Jiang, 2005; Sutradhar, 2009). The 
decomposition method employed here is adequately discussed in the published literature (Wazwaz, 2002; 
Adomian, 1994; Ngarhasta et al. 2002), but it still deserves emphasis to point out the very significant 
advantages over other methods. The said method can also be an effective procedure for the solution of the 
time fractional Fokker-Planck equation by suitable choice of drift and fluctuation term. 
 The fractional differential equations have been used to model many physical and engineering 
processes such as frequency dependent damping behaviour of materials, motion of a large thin plate in a 
Newtonian fluid, creep and relaxation function for viscoelastic materials, etc. (Suarez and Shokooh, 1997; 
Glockle and Nonnenmacher, 1991). Moreover, phenomena in electromagnetics, acoustics, viscoplasticity, 
electrochemistry are also described by differential equations of fractional order (Podlubny, 1999; Shawagfeh, 
2002). 
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 The Fokker-Planck (F-P) equation is one of the basic equations in the theory of stochastic processes 
(Markov process, for example) and has been the focus of many studies (Odibat and Momani, 2007). This 
parabolic differential equation describes the transition probability density function f(x, t) and is given by 
Oksendal (2004). 
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where the coefficient A is called the drift term and the coefficient B≥0 is called the fluctuation term or the 
diffusion term. 
 In the present paper, we implemented the ADM to the time fractional F-P equation whose general 
form is given by 
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 is the fractional differential operator of order  (Podlubny, 1999; Oldham and Spanier, 1974). In 

these schemes, the solution is constructed in power series with easily computable components. 
 
2.  Mathematical aspects of fractional calculus 
 
 Many definitions of fractional calculus are used to solve the problems of fractional differential 
equations. The most frequently encountered definitions include the Riemann-Liouville, Caputo, Wely, Rize 
fractional operator. We introduced the following definitions (Podlubny, 1999; Oldham and Spanier, 1974). 
 

Defn. 1: Let R+. The integral operator I defined on the usual Lebesgue space L1(a, b) by 
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for a  x  b is called the Riemann-Liouville fractional integral operator of order (  0 and R). 
 

Defn. 2: The Riemann-Liouville definition of fractional order derivative is  
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where n is an integer that satisfies n-1   n. 
 

Defn. 3: A modified fractional differential operator D  proposed by Caputo is given by  
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where (0 and R) is the order of operation and n is an integer that satisfies n-1  n. 
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Defn. 4: A one-parameter function of the Mittag-Leffler type is defined by the series expansion (Podlubny, 
1999; Oldham and Spanier, 1974; Miller and Ross, 1993). 
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3.  Analysis of the method 
 
 In this section, we consider Eq.(1.2) with the initial condition f(x, 0) = (x). The standard form of 
Eq.(1.2) in an operator form is 
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. Operating with I in both sides of Eq.(3.1) we 

get 
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 The ADM assumes a series solution for f(x, t) given by Wazwaz (2002), Adomian (1994), Datta 
(1993) 
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 Substituting the decomposition series Eq.(3.3) into Eq.(3.2) yields 
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 Identifying the zeros component 0f (x, t) by f(x, 0) the remaining components where n ≥0 can be 
determined by using a recurrence relation (Wazwaz, 2002; Adomian, 1994; Adomian and Rach, 1993) 
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 From this equation, the iterates are defined in the following recursive way (Wazwaz, 2002; 
Adomian, 1994; Datta 1993; Adomian and Rach, 1993) 
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and so on. 
 Using the known 0f , all components f1, f2, … fn etc. are determinable by using Eq.(3.6). Substituting 

these 0f , , ,1 2f f … etc. in Eq.(3.3) f is obtained. 
 Convergence of this method has been rigorously established by Cherruault (1989), Abbaoui and 
Cherruault (1994; 1995) and Himoun et al. (1999). 
 
4. Application 
 
 Consider the time fractional F–P equation of order   with the initial condition f(x, 0) = 0f  = x. For 
simplicity, we take the drift term A(x) equal to (– x) and a constant fluctuation term (2k). From the relations 
Eq.(3.6) we at once have 
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and so on. 
 Substituting 0f , , ,1 2 3f f f ,…into Eq.(3.3), we get the solution f(x, t) in a series form by 
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where  E x  is the Mittag-Leffler function defined by Eq.(2.4). Interestingly, as →1 we have from 

Eq.(3.8) 
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 Equation (3.9) is an exact solution to the standard form of Eq.(3.1) which can be easily verified 
through substitution. The decomposition series solutions generally converge very rapidly in real physical 
problems (Saha et al., 2008; Kaya, 2006; Wazwaz, 2002). It is also worth noting that a rapid stabilization to 
an acceptable accuracy is evident when numerical computation of the analytic approximation is carried out 
(Saha et al., 2008; Kaya, 2006; Ngarhasta et al., 2002; Shawagfeh, 2002). 
 
5. Conclusions 
 
 The advantage of this global methodology lies in the fact that it not only leads to an analytical 
continuous approximation which is very rapidly convergent (Rida et al., 2008; Kaya, 2006; Wazwaz, 2002; 
Adomian and Rach, 1993), but also shows the dependence, giving insight into the character and behaviour of 
the solution just as in a closed form solution (Saha Ray et al., 2008; Kaya, 2006; Wazwaz, 2002; Suarez and 
Shokooh, 1997). The present analysis exhibits the applicability of the decomposition method to solve a 
fractional F-P equation. Furthermore, this method does not require any transformation techniques, 
linearization, discretization of the variables and it does not make closure approximation or smallness 
assumptions. Finally, we point out that if the conditions on one variable are better known than the others we 
consider the appropriate operator equation which can yield the solution without suffering traditional 
difficulty. This technique may be applied to the nonlinear partial differential equations such as the KdV 
equation, nonlinear Schrödinger equation, which will be considered in subsequent papers. 
 
Nomenclature 
 
 A  – drift term 
 B  – fluctuation term 
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  ,  f x t   – transition probability density function 
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