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The method of minimization of complex partial multi-valued logical functions determines the degree of 
importance of construction and exploitation parameters playing the role of logical decision variables. Logical 
functions are taken into consideration in the issues of modelling machine sets. In multi-valued logical functions 
with weighting products, it is possible to use a modified Quine - McCluskey algorithm of multi-valued functions 
minimization. Taking into account weighting coefficients in the logical tree minimization reflects a physical 
model of the object being analysed much better.  
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1. Introduction  

 
 In process planning it is of importance to elaborate the concept, models and their influence (by 

means of controlling, directing, obtaining) to get the maximum satisfaction out of them. It is, thus, stated that 
planning has an interdisciplinary character, which is similar to cybernetics. Three elements of knowledge are 
essential to design a system, that is knowledge in the scope of physical processes, regularity of influencing 
these processes and improving the optimization processes which take place. That why, an optimal designing 
or re-designing in general is regarded as a dynamic process which includes interaction and creation of new 
values. An introduction of appropriate formal formulas in the process of problem structuration combines 
complex features of quantity and quality of different levels of detail according to rules of the multi-
dimensional morphological table (Deptuła and Partyka, 2010; Partyka, 1984). Decision and morphological 
tables can be analytically and numerically coded in accordance with the definition and logic of multi-valued 
decision processes what makes it possible to apply variant way of identifying and classifying information 
while looking for solutions in the designing process (Filla and Palmberg, 2003; Francis and Betts, 1997; 
Giergiel, 1990; Kurowski, 2001; Żak and Stefanowski, 1994). The method of minimizing complex partial 
multi-valued logical functions indicates the degree of importance of construction and exploitation parameters 
playing the role of logical decision variables (Osiński et al., 2013). Introducing weighting sets of logical 
equations as design guidelines with the possibility of a separate or joint minimization with keeping the logic 
equivalence becomes important. Even in the Boolean case, the joint minimization is not worse, from the 
point of view of the number of literals, than the separate minimization. A modified Quine - McCluskey 
algorithm of minimizing multi-valued functions has been presented in the paper. Taking into consideration 
weighting coefficients in the logical tree minimization reflects more precisely the physical model of the 
object which is analysed.  
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2. Logical tree minimization of design guidelines  

 
 A logical tree is a structural presentation of a logical function, written in the form of a sum of 
products, where every element is the realisation of one solution and each component in the product is a 
logic variable (Partyka, 1984). Complex multi-valued logical functions state the degree of importance of 
logic variables, by means of changing the logical tree levels, from the most important ones (near the root) 
to the least important (in the upper part) because there is a generalisation of a bivalent indicator of quality 
into a multi-valued one; (Ck – kimi) + (ki+Ki), where Ck – the number of branches k-th level, ki – times 
simplification on the k-th level mi - valued variable, Ki – number of branches of (k-1)-th level, from which 
branches of k-th level which cannot be simplified were created. All transformations are described by the 
so-called Quine – Mc Cluskey algorithm of minimization of individual partial multi-valued logical 
functions. 
 
Example 1.  
 

For the multi-valued logical function f(x1, x2 , x3), where  x1, x2 , x3 = 0, 1, 2,  written in the following 
form KAPN: 100, 010, 002, 020, 101, 110, 021, 102, 210, 111, 201, 120, 022, 112, 211, 121, 212, 221, 122, 
there is one MZAPN after applying the Quine – Mc Cluskey algorithm of minimizing individual partial 
multi-valued logical functions which has 13 literals (Partyka, 1984) 

 

              
              

, ,

.

f x x x j x j x j x j x j x j xo o o1 2 3 1 2 2 3 1 2 3 2 2

j x j x j x j x j x j x j xo1 1 2 1 2 1 3 1 2 2 2 1 3

   

   
 

 
MAPN of a given multi-valued logical function has been shown in Fig.2. 
 

 
 

Fig.1. MAPN of a given multi-valued logical function. 
 

2. Logical tree minimization with weighting coefficients  
 
2.1. Weighting coefficients  

 
In given partial multi-valued logical functions  ,...,i 1 nf x x n variables  ,...,1 nm m - valued, it is 

necessary to take weighting coefficients  , , ,...,n n 1 n 2 1w w w w   into consideration in clustering and pseudo-

clustering, assigned to appropriate multi-valued logical products. 
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It is possible to use the Quine - McCluskey algorithm of minimizing multi-valued functions in the 
case of multi-valued logical functions with weighting products (Deptuła and Partyka, 2012; Partyka, 
1984).  

 
2.2. The Quine-McCluskey algorithm of minimizing multi-valued logical functions with weighting 

coefficients  
  
 There is an isomorphic interpretation of logical transformations, therefore the Quine - McCluskey 
algorithm of the minimization of individual partial multivalued logical functions can be analysed with taking 
into consideration weighting coefficients, what is important in describing the degree of importance of design 
guidelines (Deptuła and Partyka, 2012; Partyka, 1984). 
 The Quine - McCluskey algorithm of minimizing multi-valued logical functions is built of n-th 
columns of weighting coefficients  ,...,1 nw w  (Tab.1). 

  
Table 1.  The column form of weighting coefficients of elementary coefficients in the  , ... ,1 nm m  

positional system. n 2w  . 
 

 , . . . ,1 nx x  wn n 2w    …  w1 

 ,...,1 nw w       0   0   ...   0 0  . 
 

    
 

  

 ,...,1 nw w  0   0   ...   0 1  .       

 ,...,1 nw w  0   0   ...   1 nm 2  .       

                . 
. 
. 

     .       

 ,...,1 nw w  1m 1    2m 1   ...   n 1m 1  nm 2  .       

 ,...,1 nw w  1m 1    2m 1   ...   n 1m 1  nm 1  .       

    
ip         1 2 3 4 n... i= 1, ..., n i= 1, ..., n i= 1, ..., n 

 
Symbols, signifying pseudo-clustering (V) and clustering (v) subsequently in relation to groups of 

indices which differ by 1, are placed in columns corresponding to weighting coefficient values for 
appropriate logical products in columns with ( ,..., )1 nw w weighting coefficients (Tab.1) position numbers 

ip  are introduced, where i=1,...,n., what is important in calculating the quality of minimization in further 
steps.  

In the case of clustering of individual partial multi-valued logical functions with weighting 
coefficients, the definitions of “clear” and “unclear” clustering are introduced:  

 
The process of clear clustering is the following transformation 
 

     ...
ri o r i m 1 r iw Aj x w Aj x w A   .                                                         (2.1)    

  
The process of unclear clustering is the following transformation 
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   

    
,...,

...

min ,...,

r r

r

o m 2r

o o r m 1 m 1 r

o m 1 s s r
s i i

w Aj x w Aj x

w w A w A j x


 




  

                                                     (2.2) 

 

where: , ... ,r 1 n ,  min ,...,
rs 0 m 1w w w   and A - partial elementary product, variables of which belong 

to the set  , ... , , , ... ,1 r i r i nx x x x  . In n variables  ,...,1 nm m -valued, the weighting coefficient iw  before  

 
the partial canonical product adopts values from the range ,...,1 nw w , if ...j j 1 j 2 1w w w w      where 

,...,j 2 n  (in the case of z signs, an exemplary form can be as follows: 1(000)+ 2(010)+ 2(020)= 1(0-0)+ 
2(010) +2(020)). 
 In the case of unclear clustering, signs (V) of elementary products with  ,...,1 nw w  coefficients are 

put in one column related to the smallest coefficient value min ,...,1 nw w  on the position ip . Signs (V) are 

put in the case of the remaining clustering products of weighting coefficients  min ,...,
rs 0 m 1W w w  , in 

columns with an appropriate coefficient  ,...,1 nw w . However, they are placed on the same position ip , on 

which V signs are placed in the column with the coefficient min ,...,1 nw w . 

The minimization quality can be calculated according to the following formula 
 

   pi pi m i n
i

k m i pk pk i
pp

C k k n n K                                                (2.3) 

 
where: 

pimk -multivalency of i- th variable subject to clustering of products on the ip  position in the case of clear 

clustering of products with the im  coefficient or in the case of unclear clustering with the coefficient 

 ,...,1 nm m , 

i pik - the number of literals representing products of the coefficient bigger than the minimum coefficient,  

mpkn - multifactor occurrence of  clear clustering,  

ipkn - multifactor occurrence of non-clustering of literals i pik  in the process of unclear clustering,  

ni
K - times of pseudo-clustering of i –th variable that is arbitrary clustering on the basis of a smaller number 

of components than im , used only for the needs of calculating literals for  k 1  -th level. 

 The Quine - McCluskey algorithm with multi-valued weighting coefficients requires: 
 

1. Looking for clustering products,  
2. Assigning the (v) sign to the clustering products on the n position with the smallest 

coefficient, 
3. Assigning the (v) sign to the products earlier clustered with the remaining coefficients, 
4. Assigning the V sign to the remaining products of pseudo-clustering on n positions with appropriate 

coefficients, 
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5. Calculating the minimization value:  pi pi m i n
i

k m i pk pk i
pp

C k k n n K     , 

6. Putting the “-“ sign before products with weighting coefficients taking part in clustering in view of 
point 2, 

7. Memorising subsequent literals which are not clustered together with the weighting coefficients 
which had earlier received the (V) sign in view of point 2, 

8. Memorising subsequent literals which are not clustered together with the weighting coefficients 
which had earlier received the (V ) sign in view of point 3. 
  

Example 2.  
 

In the partial logical function  , ,1 2 3f x x x , written in the following form in KAPN: 010, 100, 002, 

011, 110, 012, 112, the Quine - Mc Cluskey algorithm of minimizing logical functions with multi-valued 
weighting coefficients gives one MZAPN, which has 11 literals  , ,1 3 2f x x x , that is 

 

              
          
, ,1 3 2 0 1 0 3 1 2 1 3 1 2 2 3

1 1 2 3 1 2 0 3 1 2

f x x x j x 1 j x j x 2 j x 2 j x 2 j x

j x 1 j x j x 2 j x j x

   

 
 

 
whereas the remaining ZAPN  , ,1 2 3f x x x ,  , ,2 1 3f x x x ,  , ,2 3 1f x x x ,  , ,3 1 2f x x x  of a given 

logical function have respectively 12 and  , ,3 2 1f x x x 13 literals 

 

  
 

 
( , , ) ( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( ) ( ) ( ) ,

2 3 1 0 2 0 3 1 1 2 3 0 1

1 2 0 3 1 1 1 3 0 1 1 3 0 1

f x x x j x 1 j x j x 2 j x j x

j x 2 j x j x 2 j x j x 2 j x j x

  

  
   

 

  
 

    
( , , ) ( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( ) ( ) ( ) ,

2 1 3 0 2 0 1 2 3 1 1 0 3

1 2 0 1 1 3 2 3 1 1 0 3 2 3

f x x x j x 2 j x j x 1j x j x

j x 2 j x j x j x j x 2 j x 1j x

  

   
 

 

  
  

  
( , , ) ( ) ( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( ) ( ) ,

1 2 3 0 1 0 2 2 3 1 2 1 3 2 3

1 1 0 2 0 3 1 2 0 3 2 3

f x x x j x 2j x j x 2 j x j x j x

j x 1j x j x j x 2 j x 1j x

   

  
 

 

  
 

 
( , , ) ( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( ) ( ) ( ) ,

3 1 2 0 3 0 1 1 2 1 1 1 2

1 3 0 1 1 2 2 3 0 1 1 1 1 2

f x x x j x 1 j x j x 2 j x j x

2 j x j x j x j x 2 j x 1 j x j x

  

  
 

 

  
 

 
( , , ) ( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) .

3 2 1 0 3 0 2 1 1 1 2 1 1

1 3 1 2 0 1 2 3 0 2 0 1 1 2 0 1

f x x x j x 1j x j x 2 j x j x

2 j x j x j x j x 2 j x j x 2 j x j x

  

  
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Subsequent stages of the algorithm 
 

 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 Figure 2 shows MZAPN and ZAPN of a given logical function from example 2. 
 
 
 

   v 
wi x1 x2 x3 wi =2 wi =1 
1 0 1 0     V   
1 1 0 0       V 
2 0 0 2    V    
2 0 1 1 V    V   
2 1 1 0  V      
2 0 1 2 V    V   
1 1 1 2      V  
 pi 1 2 3 4 1 2 3 

  v  
wi x1 x2 x3 wi =2 wi =1 
1 0 1 0       V   
1 1 0 0     V     
2 0 0 2  V        
2 0 1 1    V      
2 1 1 0 V    V     
2 0 1 2  V        
1 1 1 2         V 
 pi 1 2 3 4 1 2 3 4 5 

 v   
wi x1 x2 x3 wi =2 wi =1 
1 0 1 0       V  
1 1 0 0        V
2 0 0 2    V     
2 0 1 1     V    
2 1 1 0  V     V  
2 0 1 2 V     V   
1 1 1 2      V   
 pi 1 2 3 4 5 1 2 3 

   V
 wi  x2 x3 wi =2 wi =1 

2(012) 1 - 1 2   V 
2(110) 1 - 1 0   V 
 2 1 1 V   
 2 0 2  V  
 2 0 0  V  

 pi 1 2 1 

  V  
 wi  x2 x3 wi =2 wi =1 

2(012) 1 - 1 2    V  
2(110) 1 - 1 0     V 
 2 1 1   V   
 2 0 2 V     
 2 0 0  V    

 pi 1 2 3 1 2 

  V  
 wi  x1 x3 wi =2 wi =1 
 1 0 0    V   
2(110) 1 - 1 0    V   
 2 - 0 2   V    
 2 0 1  V     
 1 1 2      V

 pi 1 2 3 1 2 3 

   V
 wi  x1 x3 wi =2 wi =1 
 1    0 0  V  
2(110) 1 - 1 0   V 
 2 - 0 2 V   
 2 0 1 V   
 1 1 2   V 
 pi 1 1 2 
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Fig.2. Logical trees MZAPN and ZAPN of a multi-valued logical function  , ,1 3 2f x x x from example 3. 

 
3.  Application of the logical tree minimization with weighting coefficients in the analysis of 

the degree of importance of construction parameters of the proportional valve  
 
 Figure 3 shows the drive system with a proportional valve with a valve receiver.  
 

 
 

Fig.3. Drive system scheme. 
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 The balance of the flow in the drive system in accordance with the work (Tomasiak, 1989) can be 
described in the following way 
 
                      p zQ 1 odbQ Q Q Q   .                                                                                          (3.1) 

 
 The balance of the flow through the main valve lift 
 
                      .zQ zQx D1 txQ Q Q Q                                                                                      (3.2) 

 
 The flow through the valve throat 
 
           ,D1 D2 D3Q Q Q                                                                                              (3.3) 
 
                       .DG zQY tYQ Q Q                                                                                             (3.4) 

 
 The balance of the flow through the steering valve lift 
 
            ,D3 1Y zQY tY txQ Q Q Q Q                                                                           (3.5) 

 
 Figure 4 shows the scheme of the hydraulic valve under analysis.  
 

 
 

Fig.4. Proportional valve scheme. 

 
 What is more, flow intensity in the main and steering degree can be differentiated. Output equations 
for making simulations of the hydraulic part work are of the following form 
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   
     

: ,

: . . . . . ,

: . . . . .

.

1
2

3 3 32
2 vx 1 3 1 1 3 6

9 9 9 93
3 vx 1 3 2 3 6

1

dx
1 x

dt
dx

2 14846 301x 801 2102 10 k x x 147224 3x 1925 135 5 3792244 10 1 10 x x x
dt

dx
3 0 2851216 10 1 1 32 10 x 0 5279061 10 k x x 0 1226361 10 x 7 65 x x

dt

0 3227777 10

 





           

          

 

 

   

,

: ,

: . . sign . .

. sign . ,

: . . . .

2
odb

4
5

23 6 2 45
5 5 5 7 vy 4 7

5 m

5 12 12 96
3 6 vy 4 6 3

Q

dx
4 x

dt
dx

5 5 5688865 10 x 0 840264 10 x x 0 7123874 10 x 418 87733 k x x
dt

2 616 x 33 33333F

dx
6 0 276556 10 x x 0 312234 10 k x x 0 4432633 10 x 2 060625 10 x

dt





        

 

        

 

,

: . . .

5

6
7 6 vy 4 6 57 x x 0 2025169 10 k x x 1328 096 x

























    

 

 The initial conditions of differential equations are set by introducing idx
0

dt
 . 

 
3.1. The degree of importance of construction and exploitation parameters of the hydraulic 

proportional valve 
 
 In the optimization process, the changeable parameters of the proportional valve are as follows: 

regulator strengthening p1 p2K K  (as a complex variable), flow intensity odbQ  (depending on the 

enforcement of step changes in supply control voltage zU ) and magnetic force mF - when the flow intensity 

Q and pressure p are being watched.  
      A simulation was made in the Matlab/Simulink 
 

   
     

 

. . . . ,

. . . . . ,

. . .

3 3 3
vx 1 3 1 1 3 6

9 9 9 12
3 vx 1 3 3 6 odb

24
7 vy 4 7 m

801 2102 10 k x x 147224 3x 1925 135 5 3792244 10 1 10 x x x 0

0 2851216 10 1 1 32 10 x 0 5279061 10 k x x 7 65 x x 0 3227777 10 Q 0

0 7123874 10 x 418 87733 k x x 33 33333F

 





          

         

   

   
 

,

, . ,

. .

5 12
3 6 vy 4 6

6
7 6 vy 4 6

0

0 276556 10 x x 0 312234 10 k x x 0

x x 0 2025169 10 k x x









    

   


 

 
 Arithmetic values of the parameters which had been coded by means of decision variables were 

chosen to be analysed 
 

   p1 p2K K 30  ~ 0;     p1 p2K K 40   ~ 1;    p1 p2K K 50  ~ 2;     p1 p2K K 60  ~ 3. 

 
  .mF 1 96 [N] ~ 0;      .mF 2 96 [N]~ 1;      .mF 3 96 [N]~ 2;      .mF 4 96 [N]~ 3;  
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  rzQ 36 24  [ / min3dm ]~0; rzQ 24 12  [ 3 / mindm ]~1; rzQ 36 12  [ 3 / mindm ]~ 2. 
 

 In the limitation .w ot 0 48t  the following values of weighting coefficients were adopted 
 

iw =3,    .w ot 0 16t ;      iw =2,      . .o w o0 16t t 0 32t  ;      iw =1, . .o w o0 32t t 0 48t  . 
 
 Table 2 shows changes in coding of construction parameters Kp1 Kp2, Qrz,, Fm taking into 

consideration multi-valued weighting coefficients and the limitation .w ot 0 48t . 
 
Table 2. KAPN of the code data of parameters Kp1Kp2, Qrz,, Fm taking into consideration weighting 

coefficients wi. 
 

wi Fm Kp1Kp2 Qrz wi Fm Kp1Kp2 Qrz 

2 2 1 2 3 0 1 1 
2 2 3 2 1 0 1 2 
2 2  2 1 3 0 1 0 
2 2 2 2 2 0 0 1 
2 1 2 1 1 0 0 2 
3 3 0 2 1 1 2 2 
1 1 0 2 2 1 1 2 
2 0 2 1 1 1 3 2 
1 0 2 2 1 3 2 2 
2 0 2 0 1 3 1 2 
3 0 3 1 3 3 3 2 
2 0 3 2     

 
Exemplary time spans of the functions Q and p have been shown in Fig.5 with indicating ranges of 

weighting coefficients wi:  p        and Q         . 
 

  
Fig.5. Timing Q and p for code changes parameter mF , p1 p2K K , Qrz : 1(102), 3(010). 

 
 Figure 6 shows the optimal multivalued logic tree with weighting factors in Tab.2. 
Other multivalued logic trees of weighting factors are shown in Fig.7. 
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Fig.6.  Optimal multivalued logic tree with weighting factors from Tab.2 for the parameters:  

Qrz, mF , p1 p2K K . 
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Fig.7. Multivalued logic trees with weighting factors from Tab.2. 
 

 For the condition of the limitation .w ot 0 48t  there is an optimal multi-valued logical tree presented 

in Fig.7 The most important parameter for the hydraulic proportional valve is the flow intensity odbQ  

(depending on the enforcement of step changes in supply control voltage zU ).  

 
Conclusions 
 

In complex situations of the designing process, it is important to write the presented methods of 
designing graphs and game-tree structures in the form of algorithms and program them in an appropriate way 
in order to avoid the complexity of calculations of exponential type. Such a property is obtained among 
others in the issues of minimization of bivalent and multi-valued logical functions. In mathematics, a logical 
function grows faster than a given polynomial and thas is why calculation complexity NP does not guarantee 
that we obtain a real-time calculation outcome of a given design-construction problem. 

 The minimization method of the complex, partial, multi-valued logical functions indicates the degree 
of importance of construction and exploitation parameters, playing the role of logical decision variables. A 
generalized Quine – McCluskey algorithm of minimization of multi-valued logical functions with multi-
valued weighting coefficients has been presented in the paper. For an exemplary proportional valve, such 
actions can be undertaken separately by analysing each output parameter with an additional, weighting, 
logical coefficient for the stabilisation time, i.e., a shorter (better) stabilisation time has a more important 
(bigger) value of the weighting coefficient of an appropriate multi-valued weighting product.  
 

Nomenclature 
 

 Ck – the number of branches k-th level 
 d – the valve diameter [m] 

 mF  – electromagnetic force 

 f(x1, x2 , x3) – partial multi-valued logical functions 
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 K – spring constant  /N m  

 p1 p2K K  – the gain of the proportional valve 

 ,vx vyk k  – degree of loss factors in the control of the hydraulic proportional valve 

 MZAPN – minimum alternative complex normal form 
  ,...,1 nm m  – multi-valued logical function of n variables ( ,..., )1 nm m - valued 

         m – valve head mass [kg] 
 n – the number of different letters in the Boolean function 

 P – flow intensity [m3/s] 
 p  – pressure 
          1Q  – flow rate of the pumped liquid [m3/s] 

          2Q  – flow rate of the liquid coming out of the valve [m3/s] 

 pQ  – real pump performance 

 D1Q , D 2Q D 3Q  – flow rate through the nozzle D1, D2, D3 in the valve proportional 

 odbQ  – flow proportional valve receiver 

   t – time [s] 
 zU  – rorced displacements of the control voltage proportional valve 

           V – the valve volume 3m 
   

 (V), (V) – symbols signifying pseudo-clustering and clustering 
   x – spring deflection [m] 

  , ,1 2 3x x x  – decision variables 
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