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In this work the theory of two temperature generalized thermoelasticity has been used to investigate the 
problem of reflection of P-wave and SV-wave in a half space when the surface is i) thermally insulated or ii) 
isothermal. The ratios of the reflection coefficient to that of the incident coefficient for different cases are 
obtained for P-wave and SV-waves. The results for various cases for the conductive and dynamical temperature 
have been compared. The results arrived at in the absence of the thermal field (elastic case) have also been 
compared with those in the existing literature. Finally, the results for various cases have been analyzed and 
depicted in graphs. 
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1. Introduction 
 
 In the classical uncoupled and coupled theory of thermoelasticity, the heat transport equation 
involved is of diffusion type which predicts infinite speed of propagation of thermal signals, whereas the 
equation of motion is of hyperbolic type and as such the elastic disturbance propagates with finite speed. The 
non-classical theory of thermolasticity involves hyperbolic type of equations in both the heat conduction 
equation and mechanical equations of motion. 
 At present, there are three generalizations of the thermoelastic theory which are supported by 
experiments, revealing the actual occurrence of wave type heat flow in solids. Suhubi (1982) called this 
phenomenon the  second sound effect, the first sound being the usual sound wave. Lord and Shulman (1967) 
employed a modified version of the Fourier law of heat conduction by introducing a flux-rate term and 
thereby established the generalized version of the heat transport equation which is hyperbolic in nature. 
 In the L-S (Lord and Shulman, 1967) theory only one relaxation parameter having the dimension of 
time has been used. Later Green and Lindsay (1972) presented a theory of thermoelasticity with certain 
special features that contrast with the L-S theory. In the G-L model, the Fourier law of heat conduction is 
unchanged whereas the constitutive relations and the classical energy equation are modified with two time 
relaxation parameters. The third generalization of the theory was proposed by Green and Nagdhi (1992; 
1993; 1996) who provide sufficient basic modifications in the constitutive equations that permit solution of a 
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much wider class of heat flow problems. These theories also provide finite speed of propagation of heat 
waves. 
 Chen and Gurtin (1968a) and Chen et al. (1968b) formulated a theory of heat conduction in 
deformable bodies, which depends on two distinct temperatures, the conductive temperature   and the 
thermodynamic temperature T. For time dependent problems and for wave propagation problems in 
particular, the two temperatures are in general different, regardless of the presence of heat supply. The basic 
equations of two temperature generalized thermoelastic theory have been deduced by Youssef (2006). The 
problem of two temperature disturbances in an infinite body with a spherical cavity subjected to different 
types of thermal loading was solved by Youssef et al. (2007). Based on two temperature generalized theory 
Bassiouny et al. (2008) solved the problem of a thermopiezoelectric rod under different types of thermal 
loading. Das et al. (2008) solved the problem of reflection of generalized thermoelastic waves on a half 
space using the GN-model (1993). 
 So far as the present authors are aware, no work on reflection of waves on the boundary of a half 
space based on two temperature theory has been done. We now propose to work on the problem the 
reflection of P- and SV- waves in a rigidly fixed isothermal or thermally insulated boundary. The amplitude 
ratios for different cases have been calculated and the results are depicted in several graphs showing the 
nature of variations due to conductive and dynamic temperature.  
 
2. Formulation of the problem and solution 
 
 Let the origin of the rectangular Cartesian coordinate system be fixed on the boundary of the 
homogeneous, isotropic elastic half space with the z 0  axis directed normally inside the medium with the 
x -axis along the horizontal direction. The axis of y  is taken in the direction of the line of intersection of the 
plane wave front with the plane surface Fig.1. 
 

 
 

Fig.1. Intersection of the wave front by xz -plane. 
 
 If we restrict our analysis to plane strain in the xz -plane, then all the field variables may be taken as 
a function of x , z  and t . Then the displacement vector u , the thermodynamical temperature T, and the 
conductive temperature  may be taken as 
 

Wave 
direction z 

x 

x’ 

0 



Reflection of P-wave and S-wave in a generalized …  737 

       , , , , , , , , , ,u x z t 0 w x z t T T x z t    u           and          , , .x z t    

 
 Following the L-S model of generalized thermoelasticity, the equations of motion for an isotropic 
elastic solid in the absence of body force, the heat conduction equation in the absence of heat source may be 
written as in Youssef (2006) 
 

   ( ) ,2 T          u u u    (2.1) 

 

     ,ii E 0 0 kk 0 kkk c T T T e e              (2.2) 

 
where the relation  
 

  , ,2T a a 0       (2.3) 
 
is to be satisfied by the conductive temperature   and thermodynamic temperature T. Here 'a  is called the 
two temperature parameter. 
 The stress-strain relation may be written as  
 

   , , ,ij k k ij i j j iu u u T           (2.4) 

 

where   and  are Lame constants,   ,t t3 2        being the coefficient of thermal expansion,   is the 

mass density, k is the thermal conductivity, Ec is the specific heat at constant strain, 0T  is the reference 

temperature, and 0  is the relaxation time parameter, the system of Eqs (2.1) and (2.2) are hyperbolic in 
nature and as such both the elastic and thermal disturbance propagate in the medium with finite speed. 
 In order to non-dimensionalize the equations, we define the following quantities 
 

  

 

* * *
, , , ,

* *
, , , ,

, * , * .

1 1 1 0

1 1

0 0 0 0

ij E
ij 0 0

0

w x w z w t
x z t

c c c T

w c u w c wa
a u w

T T T T

c 2
w w

T k

       

        
 

         


  (2.5) 

 
 Suppressing primes for convenience in the notation, the dimensionless forms of Eqs (2.1)-(2.4) will 
be as follows 
 

      ,2 2 2 2 2 2
2 1 2 1 1c c c c T c      u u u     (2.6) 

 

   ,2
0 0T T          u u       (2.7) 
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    ,0 0T a T T          u u       (2.8) 

 

   div
2 2
2 2

ij ij ij ij2 2
1 1

2c 2c
1 e T

c c

 
        

 
u   (2.9) 

 

where,  
 

, , ,
22

2 2 2 02
1 2 2

E1

Tc2
c c

c 2c

   
     

     
. 

 
 Let us consider a decomposition of the displacement vector in the form 
 
  grad curl , div 0   u     (2.10) 
 
where   and   are thermoelastic potential functions. Substituting Eq.(2.10) in Eqs (2.6)-(2.7), we obtain 
 

    ,2 2 2 2 2 2
1 2 1c 1 a c c 0                 

       (2.11) 

 

      .2 2 2
0 01 a                   (2.12) 

 
 Equation (2.11) will be satisfied if 
 

    ,2 21 a          (2.13) 

 

and   .2
2

1
0  


    (2.14) 

 
 From Eqs (2.13) and (2.14) we see that the P-wave is affected in the presence of the thermal field 
while SV-wave remains unaffected. 
 Eliminating   from Eqs (2.12) and (2.13), we get the equation for the thermoelastic potential 

function   as  
 

  
      

    .

4 2 2 2 2
0

2 2
0

1 1 a 1 1 1 a

1 a 1 a 0

                     

         

 

 
 (2.15) 

 

 Choosing  , ,0 0  , Eq.(2.14) takes the form 

 

  .2
2

1
  


  (2.16) 

 
 Thus the potential   corresponds to the displacement in the xz -plane due to SV-wave. The 
displacement and stress components in terms of the potential function can be written as 
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  , , ,u v 0 w
x z z x

   
    
   

 

 

    ,
22 2 2 2

22
zz 2 2 2 2

1

2c
1 a

x zx z c x

          
                    

 (2.17) 

 

  .
2 2 2 2
2

zx 2 2 2
1

c
2

x zc x z

      
         

 

 
 For plane P-wave propagating in the x  direction (as in Fig.1) we have 
 

   i kx tAe     (2.18) 
 
where k is the wave number and   is the circular frequency of the wave. Now x  can be calculated as  
 
  sin cosx x z     
 
where   is the angle of inclination of the incident wave with the normal to the surface. Thus   becomes 
 

    sin cos
.

i k x z t
Ae

      (2.19) 
 

 Substituting Eq.(2.18) in Eq.(2.15), we get a quadratic equation in 2k  as 
 

  
      

  .

4 2 2 2 2 2 2
0 0

2 2
0

k 1 a 1 i k 1 a i

i 0

                         

    
  (2.20) 

 
 Solving this Eq.(2.20), the roots of this equation may be written as 
 

  , ,2 2
1 1 1 2 2 2k M iN k M iN      (2.21) 

 

  
 

, ,

3 24
2

1 12 2

aa
M 1 N

1 1

           
     

 

   (2.22) 

  , .2
2 0 22 2

a a
M N 1 a

1 1

                
      

 

 
 In the same way we can also write down the solution of Eq.(2.16) as 
 

  
  sin cos3i k x z t

Be
       
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where,   .
2

2
3 2

k





  (2.23) 

 
CASE I: Plane P-wave incident upon a plane surface 
 
 Let the angle of incidence with the normal to the surface be 0  (Fig.2). Then for P-wave, we may 
take the following forms 
 

 
 

Fig.2. Incident P-wave and corresponding reflected waves. 
 

   sin cos ,1 0 0ik x z
i 3A e       (2.24) 

 

     sin cos sin cos ,1 1 1 2 2 2ik x z ik x z
r 4 2A e A e          (2.25) 

 

   sin cos3 3 3ik x z
r 6A e       (2.26) 

 

where, the suffix i and r correspond to incident and reflected waves. The term i te   has been omitted from 
Eqs (2.24)-(2.26) for simplicity. 
 Since i r     , so r  can now be calculated from Eq.(2.13) as 
 

         sin cossin cos sin cos1 0 02 2 2 1 1 1ik x zik x z ik x z2
r 1 2 2 3 3 41 a b A e b A e b A e               (2.27) 

 

where   , .2 2 2 2
1 2 2 3 1b k b b k        

 
 The components of displacements and stresses can be calculated from Eq.(2.17) by changing 
 
  , ,i r r                   and              .r     (2.28) 
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Reflection at rigid boundary 
 
 The boundary conditions are given by 
 

  
T

u w hT 0
z


   


,              on                     z 0   (2.29) 

 
where h 0  and h  , correspond to thermally insulated and isothermal boundaries respectively. 
 Using Eqs (2.24)-(2.28), we calculate the displacement from Eq.(2.17) and then using the boundary 
condition Eq.(2.29), we obtain 
 

  
sin sin

sinsin

sin sin

sin cos ,

1 0 1 1

3 32 2

ik x ik x
1 0 3 1 1 4

ik xik x
2 2 2 3 3 6

ik A e ik A e

ik A e ik A e 0

 



   

    
 (2.30) 

 

  
sin sin

sinsin

s s

s sin ,

1 0 1 1

3 32 2

ik x ik x
1 0 3 1 1 4

ik xik x
2 2 2 3 3 6

ik co A e ik co A e

ik co A e ik A e 0

 



    

    
 (2.31) 

 

  

sinsin sin

sinsin sin

cos cos cos

.

1 02 2 1 1

1 02 2 1 1

ik xik x ik x
1 2 2 2 2 3 1 0 2 4 1 1

ik xik x ik x
1 2 2 3 2 4

i b A k e b A k e b A k e

h b A e b A e b A e 0

 

 

       
     

 (2.32) 

 
 In order that Eqs (2.30)-(2.32) might hold for all values of x , the terms in the left hand side should 
be independent of x , and this condition is satisfied if 
 
  sin sin sin sin .1 0 1 1 2 2 3 3k k k k         (2.33) 
 
 Equation (2.33) implies that 
 

  

sin sin sin sin ,

sin sin .

32
0 1 2 3

1 1

0 1 0 1

kk

k k
      

      
  (2.34) 

 
 In the case 0 0    , we get  
 

  0 1                    and                    
sin sin

,0 3

1 2c c

 
   (2.35) 

 
which is Snell’s law. 
 Using Eq.(2.33) in Eqs (2.30)-(2.32) we get three linear homogeneous equations for the four 

unknowns , ,2 3 4A A A  and 6A . Hence we prefer to calculate the amplitude ratios , 42

3 3

AA

A A
 and 6

3

A

A
 of the 

waves by applying different boundary conditions. 
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Incident P-wave at insulated rigid boundary  h 0  

 
 Equations (2.30)-(2.32), after reviewing through conditions Eqs (2.33) and (2.34) and taking h 0 , 
may be written in the form 
 

  

/

/

/

11 12 13 2 3 12

21 22 23 4 3 22

31 32 6 3 32

a a a A A a

a a a A A a

a a 0 A A a

     
          
          

  (2.36) 

 

where 
 

  sin , sin , cos ,32
11 2 12 0 13 3

1 1

kk
a a a

k k
        

 

  cos , cos , sin32
21 2 22 0 23 3

1 1

kk
a a a

k k
      , (2.37) 

 

  cos , cos .
1

3 2 2
2

31 2 32 03 2 2
2 1

k
a 1 a 1

k k k

    
           

   
  

 

 Solving Eq.(2.36), we get  
 

  sin sin ,
2

32
0 32

3 11

kA 1
1 2

A kk

 
       

  (2.38) 

 

  cos sin sin ,
3 2

4 32
2 0 33 2

3 11 2

A kk2
1 1

A kk k

 
         

  (2.39) 

 

  cos sin
2

6 2 2
2 02

3 1 1

A k k1
1 2

A k k

 
       

  (2.40) 

 

where   cos sin cos sin sin
32 2

32 2
0 2 2 1 32 3 2

1 11 1 2

kk k
1 1

k kk k k

                            
  

   (2.41) 

  cos cos cos cos cos .
32 2

32 2
0 2 2 1 32 3 2

1 11 1 2

kk k
1 1

k kk k k

                          
 

 

 In the case when 0 a 0     , Eqs (2.38)-(2.40) take the form 
 

  ,2

3

A
0

A
                     

cos cos sin
,

cos cos sin

2
4 3 0 0

2
3 3 0 0

A

A

    


    
 

   (2.42) 

  
sin

cos cos sin
6 0

2
3 3 0 0

A 2

A

 


    
. 

 

 Equations (2.42) are in complete agreement with the corresponding equations in Achenbach (2001). 
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Incident P-wave at isothermal rigid boundary  h   

 
 In this case the amplitude ratio can be calculated as 
 

    sin sin ,2 2 32
1 0 3

3 1

kA 2
k

A k
    


 

 

   sin sin ,2 24 3
2 0 3

3 1

A k2
1 k

A k
     


 

 

     sin cos cos2 2 2 26 2
0 1 2 2 0

3 1

A k2
k k

A k

 
          

  
  (2.43) 

 

where,      sin sin sin2 2 2 2 32
1 2 2 0 3

1 1

kk
k k

k k

 
           

 
 

   (2.44) 

     cos cos cos .2 2 2 2 32
1 2 2 0 3

1 1

kk
k k

k k

 
         
 

 

 
 In the case when 0 a 0     , the above equations also take the form as in Eq.(2.42). 
 
CASE II: PLANE SV-WAVE INCIDENT UPON THE PLANE SURFACE 
 
 We now proceed to determine the amplitude ratios for an incident SV-wave on the boundary under 
the same boundary conditions Eq.(2.29). 
 

 
 

Fig.3. Incident SV-wave and the corresponding reflected waves. 
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SV-wave incident upon insulated rigid boundary  h 0  

 

 As in Fig.3, we take the incident SV-wave i  (omitting the term i te  ) as 
 

   sin cos .3 0 0ik x z
i 5A e      

 
 Reflected SV-, P-, and thermal waves may be taken as  
 

   sin cos ,3 1 1ik x z
r 6A e      

 

     sin cossin cos ,2 3 31 2 2 ik x zik x z
r 4 2A e A e          (2.45) 

 

       sin cossin cos 2 3 31 2 2 ik x zik x z2
r 2 4 1 21 a b A e b A e         

 
 
where   , ,i r r                 and              .r    
 
 In order to satisfy the boundary conditions Eq.(2.29) when h 0 , we use Eqs (2.45) and (2.17) in 
Eq.(2.29) and get  
 

  

/

/

/

11 12 13 2 5 13

21 22 23 4 5 23

31 32 6 5

a a a A A a

a a a A A a

a a 0 A A 0

     
           
         

  (2.46) 

 

where 
 

  

sin , sin , cos ,

cos , cos , sin ,

cos , cos .
1

2 1
11 3 12 2 13 0

3 3

2 1
21 3 22 2 23 0

3 3

3 2 2
2

31 3 32 23 2 2
2 1

k k
a a a

k k

k k
a a a

k k

k
a 1 a 1

k k k

      

     

    
           

   

  

 
 In this case the following relations corresponding to Eq.(2.33) are obtained 
 
  sin sin sin sin .1 2 2 3 3 0 3 1k k k k         (2.47) 
 
 Solving the Eqs (2.46), we get 
 

  cos sin ,
2

2
2 02

5 1

A 1
1 2

A k

 
       
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  cos sin ,
3 2

4 2
3 03 2

5 1 2

A k1
1 2

A k k

 
          

 

  cos cos cos
32 2

6 2 1 2
0 2 3 2 3 2

3 3 31 1 2

A k k k2
1 2 1 1

A k kk k k

                           
 

 

where,  cos sin cos sin sin
32 2

2 2 1
2 3 3 2 02 3 2

3 31 1 2

k k k
1 1

k kk k k

                            
 (2.48) 

  cos cos cos cos cos .
32 2

2 2 1
3 2 2 3 02 3 2

3 31 1 2

k k k
1 1

k kk k k

                          
 

 
 In the case when 0 a 0     , Eq.(2.48) takes the form 
 

  ,2

5

A
0

A
             

sin
,

cos cos sin
4 0

2
5 2 0 0

A 2

A



    

 

   (2.49) 

  
cos cos sin

.
cos cos sin

2
6 2 0 0

2
5 2 0 0

A

A

    

      

 
 Equations (2.49) are in complete agreement with the corresponding equations in Achenbach (2001). 
 
SV-wave incident upon isothermal rigid boundary  h   

 
 We follow a similar procedure as in the earlier sections to calculate the amplitude ratios. Equations 
(2.45), (2.46) along with the boundary conditions Eq.(2.29) are used when h  . The ratio becomes 
 

   sin ,2 22
1 0

5

A 1
k 2

A
   


 

 

   sin ,2 24
2 0

5

A 1
k 2

A
    


 

 

     cos cos cos2 2 2 26 2 1
0 1 3 2 2

5 3 3

A k k2
1 k k

A k k

 
           

  
 

 

where  

   

   

sin sin sin

cos cos cos .

2 2 2 22 1
1 3 2 2 0

3 3

2 2 2 22 1
1 3 2 2 0

3 3

k k
k k

k k

k k
k k

k k

 
           

 
 

         
 

 (2.50) 

 

 In the case when 0 a 0     , the above Eq.(2.50) becomes identical with Eqs (2.49). 
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3. Some observations of the results 
 
 Thus we see from the above results that the amplitude ratios depend on the initial angle of reflection

0 , coupling factor  , relaxation time parameter  , the two temperature parameter a  and the frequency  . 
We now analyze our results for different cases. Since the amplitude ratios are complex quantities, in the 

following sections, the amplitude ratios of the form 2

3

A

A
 will be considered as 2

3

A

A
. For illustrating and 

comparing the results of the two temperature LS-model with the classical coupled thermoelasticity (CCTE) 
model, we choose a copper material for which the parameters are as follows 
 

  

   

 

. / , . / , , / ,

. deg , . deg , . ,

deg , , . ,

. , . .

10 102 2 3

5 1 1 1
t E

1 1
0 0

2

7 76 10 N m 3 86 10 N m 8 954 kg m

1 78 10 c 383 1 J kg 0 0168

k 386 Wm T 293 K 0 018766

a 0 016 0 2494

   

 

       

     

   

  

 

 
A. Reflection of  P-waves on rigid insulated boundary 
 

(i) From the nature of the graph for the amplitude ratio 2

3

A

A
 in 0

00 90   , we notice that for each value 

of the frequency   in the range .0 7 5 , the maximum value increases from 0.01296 to 0.4926 

when the initial angle of incidence . , , ,0
0 045 85 a 0 0 0        (LS-model). Only a small change of 

value  0.4806 occurs for the maximum when , , 0a 0 0 0      (CCTE model). We further notice that 

at about .10 0  there are two distinct maxima for the ratio 2

3

A

A
, one at . 0

0 29 24   and the other at 

. 0
0 76 82   with values 0.4902 and 0.1687, respectively. The minimum value is recorded at 0.06129 at 

. 0
0 61 91  . The graphs are plotted for 9  and 10  in Fig.4. 

 
(ii) For the two temperature LS-model  , , 0a 0 0 0      and two temperature CCTE model 

 , , 0a 0 0 0      the graphs for 2

3

A

A
 have been depicted in Fig.5 for .1 75  in the range 

0
00 90   . In order to compute the results with the corresponding cases when a 0  (no conductive 

temperature) two other graphs have been drawn in Fig.5. It is seen that the maximum value of 2

3

A

A
 

ranges from 0.01005 to 0.05019. Thus the conductive temperature has a significant effect on the 

magnitude of 2

3

A

A
 for these chosen parameters. 
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Fig.4. Variation of 2

3

A

A
 for incident P-wave for insulated boundary. 

 

 

Fig.5. Variation of 2

3

A

A
 for incident P-wave for insulated boundary. 

 

(iii) Figure 6 shows that for normal incidence  0 0   the amplitude of the reflected wave 4A  is equal to 

the amplitude of the incident wave 3A . In the range 0
00 63   , the ratio 4

3

A

A
 decreases to zero from 

unity, but the ratio reverses during 0 0
063 90    when the ratio 4

3

A

A
 assumes zero at 0

0 63   and 
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unity at 0
0 90  . It is further observed from the graphs that the L-S two temperature, L-S CCTE and 

two temperature CCTE models yield almost identical results. 
 

 

Fig.6. Variation of 4

3

A

A
 for incident P-wave for insulated boundary. 

 

(iv) The graphs of the thermodynamic temperature L-S model and two temperature L-S models for 6

3

A

A
 have 

been presented in Fig.7. It is noticed that in both cases the ratio 6

3

A

A
 assumes almost identical values. 

The ratio starts with the zero value at normal incidence and increases to a maximum of 0.5591 at 

. 0
0 49 87  ; thereafter it decreases to zero as 0  increases in . 0

049 87 90   . 
 

 

Fig.7. Variation of 6

3

A

A
 for incident P-wave for insulated boundary. 
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B. Reflection of P-waves on rigid isothermal boundary 
 

(i) Several graphs of 2

3

A

A
 in this case have been drawn for values of 10  to 35  in the range

0
00 90   . It is observed that for 35 , the ratio assumes the zero value at normal incidence and 

then sharply increases to a maximum of 1.719 at . 0
0 25 79  . A similar graph has been predicted for 

20  with a peak value of 1.534 at . 0
0 45 86  . In the case when 10 , the ratio assumes the zero 

value at normal incidence but assumes no peak value in 0
00 90   . In all the three cases mentioned 

above, the ratio 2

3

A

A
 converges to unity at about 0

0 90   (see Fig.8). It is noticed that the two 

temperature parameter a  is not significant in this case. 
 

 
 

Fig.8. Variation of 2

3

A

A
 for incident P-wave for isothermal boundary. 

 
(ii) From Fig.9 we see that the two temperature L-S model and thermodynamic L-S model start with the 

unity value and then both decrease with nearly equal values to a minimum of 0.1032 at . 066 497  and 

0.06582 at . 067 64 , respectively. Thereafter, significant changes in values are observed in the ratio 4

3

A

A
 

which raises to nearly 0.6297 before termination in the range . 0 0
066 497 90   . 
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Fig.9. Variation of 4

3

A

A
 for incident P-wave for isothermal boundary. 

 

(iii) It is interesting to note the role of the two temperature parameter in the graph of 6

3

A

A
 in Fig.10, when 

.1 75 . The parameter does not make any significant change in values until the graphs raise from zero 

to 0.512 as maximum at . 0
0 46 43  . Thereafter, significant changes in values are observed in 

. 0 0
046 43 90   . 

 

 
 

Fig.10. Variation of 6

3

A

A
 for incident P-wave for isothermal boundary. 
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C. Reflection of SV-waves on rigid insulated boundary 
 

(i) Figure 11 depicts graphs of 2

5

A

A
 incorporating the two temperature models on (a) LS and (b) CCTE and 

also dynamic temperature models on (c) LS and (d) CCTE. It is observed that the two temperature 
parameter 'a'  is very significant in the sense that the conductive temperature tends to lower the 

maximum values  .
2

0 6138 10
  and  .

2
0 608 10

 , respectively, to  .
2

0 3963 10
  and 

 .
2

0 3949 10
  at . 0

0 16 28   and . 0
0 46 15  , respectively in both cases. The minimum value of 

 .
3

1 215 10
  has been diminished to  .

3
0 556 10

  at about . 0
0 29 8  . It is further observed that the 

relaxation time parameter 0  has contributed only to a little change in values towards the neighborhood 

of the two peaks. In all the cases the ratio 2

5

A

A
 tends to zero as 0  increases from 29.80 to 090 . 

 

 
 

Fig.11. Variation of 2

5

A

A
 for incident SV-wave for insulated boundary. 

 

(ii) A graph (not shown) of 4

5

A

A
 has been drawn for increasing 0  and it has been noticed that the ratio 

steadily increases to a maximum of . 048 42  and . 030 57  and then decreases to zero as 0  increases 

further. The parameters a  and 0  are almost insignificant in this case.  

(iii) The nature of the graph for the ratio 6

5

A

A
 is interesting in the sense that at normal incidence the 

amplitude of the incident and reflected SV-wave 5A  and 6A  respectively becomes equal. Again in the 
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range . 0 0
033 25 90    the amplitudes are equal. Further, a sharp decrease has been observed in the 

range . 0
00 12 38   . Thereafter the ratio 6

5

A

A
 steadily increases to unity as shown in Fig.12. 

 

 
 

Fig.12. Variation of 6

5

A

A
 for incident SV-wave for insulated boundary. 

 
D. Reflection of SV-waves on rigid isothermal boundary 
 

(i) In Fig.13, significant changes have been observed in the values of 2

5

A

A
 due to the two temperature 

parameter. The values of the graph for the two temperature LS-model and dynamical CCTE model 

steadily increase from zero to the maximum of 0.03886 and 0.02732 respectively at about . 0
0 29 8  . 

They graphs go to zero as 0  increases in the range . 0 0
030 33 90   . In this case also, the relaxation 

constant create insignificant changes in the values of the ratio 2

5

A

A
. 

(ii) In the graph of 4

5

A

A
 (not shown) it is noticed that the nature of the graph is almost the same as observed 

in the former case D (i) (Fig.13) for 2

5

A

A
 except the fact that for all cases (a), (b), (c), (d) as mentioned 

in section C (i) the graphs almost coincide. 

(iii) The nature of the graph of 6

5

A

A
 is almost similar to that of 6

5

A

A
 in the case of insulated boundary (Fig.12 

as explained in section C (iii)). The difference observed in this case is that the ratio reaches zero from 

unity at . 0
0 24 65   but returns to unity almost vertically at about . 0

0 30 38  . 
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Fig.13. Variation of 2

5

A

A
 for incident SV-wave for isothermal boundary. 
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Nomenclature 
 
 a  – two temperature parameter 
 Ec  – specific heat at constant strain 

 K – thermal conductivity 
 k  – wave number 
 0T   – the reference temperature 

 
 

γ
α

3λ 2μt  
  – coefficient of thermal expansion 

 λ  and μ  – Lame constants 

 ρ   – mass density 

 0τ   – relaxation time parameter 

  and ψ  – thermoelastic potential functions 

 ω   – circular frequency of wave 
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