1l DE GRUYTER
OPEN

G

Int. J. of Applied Mechanics and Engineering, 2014, vol.19, No.4, pp.735-754
DOI: 10.2478/ijame-2014-0051

REFLECTION OF P-WAVE AND SV-WAVE IN A GENERALIZED TWO
TEMPERATURE THERMOELASTIC HALF-SPACE

S. SANTRA
Department of Mathematics
Gargi Memorial Institute of Technology
Kolkata-700144, INDIA
E-mail: sutapasantra.ismu.math@gmail.com

A. LAHIRI and N.C. DAS
Department of Mathematics
Jadavpur University
Kolkata-700032, INDIA
E-mails: Lahiriabhijit2000@yahoo.com

ncdasmaths@gmail.com

In this work the theory of two temperature generalized thermoelasticity has been used to investigate the
problem of reflection of P-wave and SV-wave in a half space when the surface is i) thermally insulated or ii)
isothermal. The ratios of the reflection coefficient to that of the incident coefficient for different cases are
obtained for P-wave and SV-waves. The results for various cases for the conductive and dynamical temperature
have been compared. The results arrived at in the absence of the thermal field (elastic case) have also been
compared with those in the existing literature. Finally, the results for various cases have been analyzed and
depicted in graphs.
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1. Introduction

In the classical uncoupled and coupled theory of thermoelasticity, the heat transport equation
involved is of diffusion type which predicts infinite speed of propagation of thermal signals, whereas the
equation of motion is of hyperbolic type and as such the elastic disturbance propagates with finite speed. The
non-classical theory of thermolasticity involves hyperbolic type of equations in both the heat conduction
equation and mechanical equations of motion.

At present, there are three generalizations of the thermoelastic theory which are supported by
experiments, revealing the actual occurrence of wave type heat flow in solids. Suhubi (1982) called this
phenomenon the second sound effect, the first sound being the usual sound wave. Lord and Shulman (1967)
employed a modified version of the Fourier law of heat conduction by introducing a flux-rate term and
thereby established the generalized version of the heat transport equation which is hyperbolic in nature.

In the L-S (Lord and Shulman, 1967) theory only one relaxation parameter having the dimension of
time has been used. Later Green and Lindsay (1972) presented a theory of thermoelasticity with certain
special features that contrast with the L-S theory. In the G-L model, the Fourier law of heat conduction is
unchanged whereas the constitutive relations and the classical energy equation are modified with two time
relaxation parameters. The third generalization of the theory was proposed by Green and Nagdhi (1992;
1993; 1996) who provide sufficient basic modifications in the constitutive equations that permit solution of a
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much wider class of heat flow problems. These theories also provide finite speed of propagation of heat
waves.

Chen and Gurtin (1968a) and Chen ef al. (1968b) formulated a theory of heat conduction in
deformable bodies, which depends on two distinct temperatures, the conductive temperature ¥ and the

thermodynamic temperature 7. For time dependent problems and for wave propagation problems in
particular, the two temperatures are in general different, regardless of the presence of heat supply. The basic
equations of two temperature generalized thermoelastic theory have been deduced by Youssef (2006). The
problem of two temperature disturbances in an infinite body with a spherical cavity subjected to different
types of thermal loading was solved by Youssef et al. (2007). Based on two temperature generalized theory
Bassiouny et al. (2008) solved the problem of a thermopiezoelectric rod under different types of thermal
loading. Das et al. (2008) solved the problem of reflection of generalized thermoelastic waves on a half
space using the GN-model (1993).

So far as the present authors are aware, no work on reflection of waves on the boundary of a half
space based on two temperature theory has been done. We now propose to work on the problem the
reflection of P- and SV- waves in a rigidly fixed isothermal or thermally insulated boundary. The amplitude
ratios for different cases have been calculated and the results are depicted in several graphs showing the
nature of variations due to conductive and dynamic temperature.

2. Formulation of the problem and solution

Let the origin of the rectangular Cartesian coordinate system be fixed on the boundary of the
homogeneous, isotropic elastic half space with the z >0 axis directed normally inside the medium with the
x -axis along the horizontal direction. The axis of y is taken in the direction of the line of intersection of the

plane wave front with the plane surface Fig.1.

Wave
direction z

Fig.1. Intersection of the wave front by xz -plane.

If we restrict our analysis to plane strain in the xz -plane, then all the field variables may be taken as
a function of x, z and ¢. Then the displacement vector u, the thermodynamical temperature 7, and the
conductive temperature ¥ may be taken as
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uzl:u(x,z,t),O,w(x,z,t)], T=T(x,zt), and x=x(xz1).

Following the L-S model of generalized thermoelasticity, the equations of motion for an isotropic
elastic solid in the absence of body force, the heat conduction equation in the absence of heat source may be
written as in Youssef (2006)

O A+WV(V-u)+uVu—yV-T = pii, 2.1)

ke =peg (T+ TOT) + T (s + Toéu) (2.2)
where the relation
y—T=aVy, a>0, (2.3)

is to be satisfied by the conductive temperature ¥ and thermodynamic temperature 7. Here 'a’ is called the

two temperature parameter.
The stress-strain relation may be written as

where A and p are Lame constants, ¥ = (3% + 2}4) a,,0, being the coefficient of thermal expansion, p is the
mass density, k is the thermal conductivity, c;is the specific heat at constant strain, 7, is the reference

temperature, and t, is the relaxation time parameter, the system of Eqs (2.1) and (2.2) are hyperbolic in

nature and as such both the elastic and thermal disturbance propagate in the medium with finite speed.
In order to non-dimensionalize the equations, we define the following quantities

, w*x , w¥z . w¥t , ©
x = , z'= , t'= , 0'=—,
€ ¢ € T
' X ' a ' pW*C]u ' pW*CIW
X =, a =—, u = 5 w = s (25)
T Ty YTy Y1y
. T , cr(A+2
T = 4 T) =wW*T,, w*=—E( M).
1Ty k

Suppressing primes for convenience in the notation, the dimensionless forms of Eqs (2.1)-(2.4) will
be as follows

c§V2u+(cjz—cﬁ)V(V-u)—cle-Tzclzii, (2.6)

Vi =T+t +e(V-it+1,V i), 2.7)
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1-T=a{T+1,T +&(V-t+1,V -ii)}, (2.8)
2¢2 . 2¢2
T =[1——5](dlvu)8ij +—5el-j -T3; (2.9)
i ¢
2_A+2p 2_ K > VT,
where, c] =—, c; =—, 8 ==, g=— 0
p p ¢ peg (A+2p)

Let us consider a decomposition of the displacement vector in the form
u =grad ¢+ curly, divy =0 (2.10)

where ¢ and y are thermoelastic potential functions. Substituting Eq.(2.10) in Eqs (2.6)-(2.7), we obtain
cle[VZ(I)—(]—aVZ)x—iISJ+Vx[c§Vz\|/—c,2\'|'lJ=0, 2.11)
sz—(l—avz)(j(+roj{)=8V2(¢+10d5). (2.12)
Equation (2.11) will be satisfied if

v2¢—ds=(1—av2)x, (2.13)
2 1 .
and Vg —8—2\|/ =0. (2.14)

From Eqs (2.13) and (2.14) we see that the P-wave is affected in the presence of the thermal field
while SV-wave remains unaffected.
Eliminating y from Eqs (2.12) and (2.13), we get the equation for the thermoelastic potential

function ¢ as

Vig—(1+e)(1-aV? Vo[ 1+(1+e) ]ty (1-aV’ V7o +

(2.15)
#(1-aV? g+, (1-av?)§ =0.
Choosing y = (0,\4/,0) , Eq.(2.14) takes the form
Vo = L 2.16
V=V (2.16)

Thus the potential W corresponds to the displacement in the xz -plane due to SV-wave. The
displacement and stress components in terms of the potential function can be written as
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u:@_a_\ll’ v=0, W:@+6_\|1’
ox Oz 0z Ox
2 2 2( A2 2
S A B A 1 N ~(1-av? )1, (2.17)
o’ o ¢ \oxoz  ox?
_a 5 0’ +azw_azw ‘
= i\ oxoz ot @’
For plane P-wave propagating in the x’ — direction (as in Fig.1) we have
o= A/ (2.18)

where k is the wave number and ® is the circular frequency of the wave. Now x’ can be calculated as

x'=xsin®—2zcos0O

where 0 is the angle of inclination of the incident wave with the normal to the surface. Thus ¢ becomes

¢ _ Aei{k(xsinG—zcos 6)—mt}

(2.19)
Substituting Eq.(2.18) in Eq.(2.15), we get a quadratic equation in K as
Kk [1—a{(1+8)(i0)+rom2)+m2ﬂ—k2 [(1+s—am2)(z’m+ rom2)+w2J+
(2.20)
+o’ (ico + ’50602) =0.
Solving this Eq.(2.20), the roots of this equation may be written as
ki =M, +iN;, k3 =M, +iN,, 2.21)
3( 2
4. _ o (a0’ +¢
MIZ(DZ ]+(02a & . NIZ—(Z ),
o +1 o +1
(2.22)
My =0 {1y ——5— }, N =(D{1—a+ a+s}
? { 0 o’ +1 ’ o’ +1

In the same way we can also write down the solution of Eq.(2.16) as

v= Bei{k3(xsin 6-zcos6)—wr}
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where, k3 =—-. (2.23)

CASE 1: Plane P-wave incident upon a plane surface

Let the angle of incidence with the normal to the surface be 0, (Fig.2). Then for P-wave, we may
take the following forms

Fig.2. Incident P-wave and corresponding reflected waves.

'y :A3eik1(xsin90—zcoseo), (2.24)
¢, :A4eik1(xsin91+zcosﬁj)+Azez‘k2(xsin62+zc0592)’ (2.25)
v, :A6eik3(xsin63+zcose3) (2.26)

where, the suffix i and » correspond to incident and reflected waves. The term ¢ has been omitted from
Eqgs (2.24)-(2.26) for simplicity.
Since ¢ =¢; +¢,, so , cannow be calculated from Eq.(2.13) as

(I_aVZ)Xr :bIAzeikz(xsin92+zcosez) +b2Aseik1(xsin60—zcos90) +b3A4eik1(xsin91+zc0561) (2.27)
where b=’ —k3, by =b; =’ —kj.

The components of displacements and stresses can be calculated from Eq.(2.17) by changing

d=0;+9,, V=y,, and L=y (2.28)
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Reflection at rigid boundary

The boundary conditions are given by

u=w=6—T+hT=0, on z
Oz

Il
S

(2.29)

where 4 — 0 and & — oo, correspond to thermally insulated and isothermal boundaries respectively.
Using Egs (2.24)-(2.28), we calculate the displacement from Eq.(2.17) and then using the boundary
condition Eq.(2.29), we obtain

ikl sin 90A3€lk]xsm 09 + ik] sin 61A4elk1xsm 0, "

. ikoxsin®, ikxsin0; (2.30)
+ik,sin0,A4,e">""" 2 —ik; cos0;45e =0,
—iklcos60A3elk1xsme(’ +ik]cosﬂlA4e’k1xsme1 + 231)
+ik,c050, 4,502 L sin 0, 4,05 =,
i[b,Asz cos0,e® 27502 _p 4k, cos0,e™ 0 4 b, Ak, cos @S0 J +
(2.32)

+h|:bIAzeik2xSinez +b2A3eik1xsin60 +b2A4eik1xsin61 :| :0

In order that Eqs (2.30)-(2.32) might hold for all values of x, the terms in the left hand side should
be independent of x, and this condition is satisfied if

k]Sine():k]Sinej:kzsin62=k3sin63. (233)

Equation (2.33) implies that

. . ky . ks .
sin@, =sin@, =-2sinB, =—sin 6,

1 1
(2.34)
Sineo =Sin91 = 90 291.
In the case e =1, =0, we get
in0 in0
0,=0, and % s (2.35)

¢ ¢

which is Snell’s law.
Using Eq.(2.33) in Egs (2.30)-(2.32) we get three linear homogeneous equations for the four

A A
unknowns 4,,A43,A4, and 45 . Hence we prefer to calculate the amplitude ratios Q,A—" and A—6 of the
3 43 3
waves by applying different boundary conditions.
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Incident P-wave at insulated rigid boundary (7 — 0)

Equations (2.30)-(2.32), after reviewing through conditions Eqs (2.33) and (2.34) and taking # — 0,

may be written in the form

a;;p 4dp a

~

3 || 42/ 45 —aj;

ay; Ay Ay || Ayl A3 = ay
where
k k
2 . . _ 3
auzk—sm92, a;, =sinf,, a13——k—cos€)3,
1 1
k k
2 3 g
a21=k—cos92, a,, =co0s0,, a23=k—sm93 ,

1

3 2
a31=k_§ 0)_2_] COSGZ,
B\ k2

1

Solving Eq.(2.36), we get

A3 ALK k;
Ay 2k ke
2T AN
A 1ky(, k3 .
=——=| I—— |cosB,sin 20,
2
where A= {k—z(m——ljcoseo sin0, —
ki \ &7
1 1

k, [ o’ k3
+<—=| ——1|cosO,cosO, ——=
{kzlkf ] N AV

1

1

2
ki

2
4 :i(w——]]k—%in260 sin 03,

——I]COSGZ sin0,sin6;,

3( 2
k—i(m—z—]jcosez sin@l}k—jsin% +
k k

1

1

2
[m——ljcosez 00591}];—300593.
1

2

In the case when e =1, =a =0, Eqs (2.38)-(2.40) take the form

ﬁ:() ﬂzcose3cos60—8sin290
A A;  cos0;cos0, +Ssin’ 0,
As dsin 20,

A;  cosO;cos0, +8sin’ 0,

(2.36)

(2.37)

(2.38)

(2.39)

(2.40)

(2.41)

(2.42)

Equations (2.42) are in complete agreement with the corresponding equations in Achenbach (2001).
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Incident P-wave at isothermal rigid boundary (h - oo)

In this case the amplitude ratio can be calculated as

ﬁ=£((o2 —k]z)k—35in60 sin0;,
4; A k;
A
— —iﬁ(mz —kzz)sine() sin0;,
A5 Ak,
4 2 ky( 2 > 2 2
—2 =——sin0,{ =" — k7 |JcosO, —|®" — k5 |cosO 2.43
4, A o{kl( 1) 2 ( 2) 0 (2.43)
where A= k—z(mz—kz)sine —(oaz—kz)sine k—3$in9 +
) , 1 2 2 0 , 3
(2.44)
- k—z(wz—kz)cose —(coz—kz)cose k—3cos6
, 1 2 2 0 , 3

In the case when € =1, =a =0, the above equations also take the form as in Eq.(2.42).

CASE 1I: PLANE SV-WAVE INCIDENT UPON THE PLANE SURFACE

We now proceed to determine the amplitude ratios for an incident SV-wave on the boundary under
the same boundary conditions Eq.(2.29).

¥y

Fig.3. Incident SV-wave and the corresponding reflected waves.
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SV-wave incident upon insulated rigid boundary (4 —0)

As in Fig.3, we take the incident SV-wave y; (omitting the term eiimt) as

ik3(xsinBy—zcos6)
v, = 4se :

Reflected SV-, P-, and thermal waves may be taken as

3

ik3(xsin®;+zcos6;)
v, =4gse

o _A4eik1(xsin62+zcosez)+Azeik2(xsin63+zcose3)
-

>

2 _ ik;(xsin®,+zcos0, iky(xsin0O3+zcos03
(I—aV )X, =b,A,e ( ) +b;4,e ( )

(2.45)

(2.46)

where \VZ\V[—l_\Vra ¢=¢r7 and X=Xr-
In order to satisfy the boundary conditions Eq.(2.29) when % — 0, we use Eqs (2.45) and (2.17) in
Eq.(2.29) and get
ap; app agz || A/ As a3
ay Ay Ay || Ay As |=| —az3
where
k, . k; .
61”2—2811193, a]zz_lslnez, 6113:—00860,
ks ks
k k .
ay; =—ZCOSG3, a22=—100592, a23251n60,
ks ks

k23 o’ o’
a;; =—=%| ——1|cos0,, d;, =| ——1|cosH,.
31 k3(k22 ] 3 32 (klg 2

In this case the following relations corresponding to Eq.(2.33) are obtained
k] Sin92 = k2 Sin93 = k3 sina() = k3 Sine].

Solving the Egs (2.46), we get

2
A _1 0)—2—1 cos0,sin 20,,

(2.47)
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Y|
= —ik—z — —1 |cos0;5in 26,
45 Ak K
y 2 3( 2
—6=—1—£200560 cos0,cos0;1—= o) o -1 —ﬁk—é 03_2_1
A3 A ks k] ks ki \ Kk

where, A= Blo —2—] cos0,sin0; — kzﬁ 0)—2—1 cos0;sin0, rsin0, + (2.48)

3
- k—z(m—z—ljcos%cosez—k—ék—l(m—z—ljcosezcos% cos0,.
ks \ ki ki ks \ ks
In the case when € =1, =a =0, Eq.(2.48) takes the form
4, 0 Ay sin 20,
A; A5 8cos0,cos6, +sin’ 0,
(2.49)

As  8c0s0,cos0, —sin’ 0,

A5 8cos0,cos0, +sin’ 0,

Equations (2.49) are in complete agreement with the corresponding equations in Achenbach (2001).

SV-wave incident upon isothermal rigid boundary (h — )

We follow a similar procedure as in the earlier sections to calculate the amplitude ratios. Equations

(2.45), (2.46) along with the boundary conditions Eq.(2.29) are used when % — o . The ratio becomes

jj i(m —k,)stGO,
j—jz—é(mz —kzz)sinZG(,,

j—i_—]—icoseo{]]; (03 —k,)cose3—]l§—3(0) —kz)cosez}

A= {? (03 —k; )sm93 —]li—(oo —kz)smez}smeo
where ? ?

_{l]z_j(@z —kf)cos63 —l]i—;(coz —kzz)cosez}cosﬁ().

In the case when € =1, =a =0, the above Eq.(2.50) becomes identical with Eqs (2.49).

(2.50)
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3. Some observations of the results

Thus we see from the above results that the amplitude ratios depend on the initial angle of reflection
0, , coupling factor €, relaxation time parameter 1, the two temperature parameter a and the frequency ®.
We now analyze our results for different cases. Since the amplitude ratios are complex quantities, in the

. : : . A . : A
following sections, the amplitude ratios of the form A—2 will be considered as A—2
3 3
comparing the results of the two temperature LS-model with the classical coupled thermoelasticity (CCTE)
model, we choose a copper material for which the parameters are as follows

. For illustrating and

2=776x(10)"" N/m?,  n=386x(10)°N/m>,  p=8954kg/m’,
a, = 1.78x(10) " deg™!, ¢y =383.1 Jkg” deg”’, e=0.0168,
k=386 Wm™' deg™’, T, =293K, 1, =0.018766,

a=0.016, 5% =0.2494.

A. Reflection of P-waves on rigid insulated boundary

. . . A, . .
(1) From the nature of the graph for the amplitude ratio A—Z in 0<0,< 90" , we notice that for each value
3

of the frequency ® in the range 0<®w<7.5, the maximum value increases from 0.01296 to 0.4926
when the initial angle of incidence 6, ~ 45.85%,a#0,e 0, Ty #0 (LS-model). Only a small change of
value 0.4806 occurs for the maximum when a # 0,e # 0,1, =0 (CCTE model). We further notice that

. . . A
at about ®=10.0 there are two distinct maxima for the ratio =2, one at 0, = 29.24” and the other at
3

0, = 76.82° with values 0.4902 and 0.1687, respectively. The minimum value is recorded at 0.06129 at
0, = 61.91° . The graphs are plotted for ®=9 and ®=10 in Fig.4.

(i1)) For the two temperature LS-model (aiO,aiO,rO ;tO) and two temperature CCTE model

(a¢0,8¢0,10 =0) the graphs for % have been depicted in Fig.5 for w=1.75 in the range

3
0<6,< 90° . In order to compute the results with the corresponding cases when a=0 (no conductive
I . . A
temperature) two other graphs have been drawn in Fig.5. It is seen that the maximum value of A_Z
3
ranges from 0.01005 to 0.05019. Thus the conductive temperature has a significant effect on the
4,

3

magnitude of for these chosen parameters.
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3

(ii1) Figure 6 shows that for normal incidence (90 =0) the amplitude of the reflected wave A, is equal to

the

unity, but the ratio reverses during 63" < 0, < 90" when the ratio

Y|

amplitude of the incident wave 4;. In the range 0<0, < 63, the ratio A—4 decreases to zero from
3

4

3

assumes zero at 0, =63’ and
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unity at 6, = 90° . 1t is further observed from the graphs that the L-S two temperature, L-S CCTE and

two temperature CCTE models yield almost identical results.

nWwoo— 1 1 1 1 1

Assolure val g of[ﬁa'r\a] »

1 1 i
——— LS model

— — CCTF maodel

4y

Fig.6. Variation of
A;

1
ang

for incident P-wave for insulated boundary.

. . A
(iv) The graphs of the thermodynamic temperature L-S model and two temperature L-S models for —% have

been presented in Fig.7. It is noticed that in both cases the ratio

4

4;

assumes almost identical values.
3

The ratio starts with the zero value at normal incidence and increases to a maximum of 0.559] at

0, = 49.87" ; thereafter it decreases to zero as 0, increases in 49.87 <0, < 90" .

o T T T T T T
Iwin temperature | S-model
— — Two temperaturcCCTE model
Ihermady L3-medel
o0& Haom — — Tharmadynamic temperature CETFE model
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=TT T TEn e 0016
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25 Sy,
& A
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= # 1,
s P
= y Ty,
S sl P Ty, _
= A '
2 Vi AN
B e N
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¢ Ay
0z ft,r \\ a
01 / Y —
I"‘ LY
y
.'/
o+ | I I I | 1
0 ey ng 3436 Y T 37 s0.18" s1er
fig -

A
Fig.7. Variation of =2 for incident P-wave for insulated boundary.

3
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B. Reflection of P-waves on rigid isothermal boundary

(i) Several graphs of A in this case have been drawn for values of ®=1/0 to ®=35 in the range

3
0<0,<90" 1t is observed that for m= 35, the ratio assumes the zero value at normal incidence and

then sharply increases to a maximum of /.7/9 at 0, = 25.79° . A similar graph has been predicted for
=20 with a peak value of 1.534 at 6, =45.86" . In the case when w= 10, the ratio assumes the zero

value at normal incidence but assumes no peak value in 0<0, < 90 . In all the three cases mentioned

A . . . .

~Z converges to unity at about 0, =90’ (see Fig.8). It is noticed that the two
3

temperature parameter a is not significant in this case.

above, the ratio

1.8 T T T T T
]
,’; ‘xmar
/ 3 r ¥ 4iR”
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| |
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i ) el \
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Fig.8. Variation of % for incident P-wave for isothermal boundary.
3

(i1)) From Fig.9 we see that the two temperature L-S model and thermodynamic L-S model start with the

unity value and then both decrease with nearly equal values to a minimum of 0.7032 at 66.497° and
Ay

0.06582 at 67.64°, respectively. Thereafter, significant changes in values are observed in the ratio y
3

which raises to nearly 0.6297 before termination in the range 66.497° < 0, < 90° .
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3

(ii1) It is interesting to note the role of the two temperature parameter in the graph of A—6 in Fig.10, when
3

o=1.75 . The parameter does not make any significant change in values until the graphs raise from zero

to 0.512 as maximum at 0, =46.43". Thereafter, significant changes in values are observed in

46.43° <0, < 90"
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Fig.10. Variation of A—6 for incident P-wave for isothermal boundary.
3
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C. Reflection of SV-waves on rigid insulated boundary

. . . A4, . .
(1) Figure 11 depicts graphs of A_Z incorporating the two temperature models on (a) LS and (b) CCTE and
5

also dynamic temperature models on (c) LS and (d) CCTE. It is observed that the two temperature
parameter ‘a’ is very significant in the sense that the conductive temperature tends to lower the

maximum values  0.6138x(10)° and 0.608x(10)°, respectively, to 0.3963x(10)° and
0.3949><(]0)_2 at 0,=16.28" and 0, =46.15", respectively in both cases. The minimum value of
1.215x(1 0)73 has been diminished to 0.556 x(1 0)73 at about 0, = 29.8” . It is further observed that the

relaxation time parameter t, has contributed only to a little change in values towards the neighborhood

. A .
of the two peaks. In all the cases the ratio —2 tends to zero as 0, increases from 29.8" to 90° .
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Fig.11. Variation of A_Z for incident SV-wave for insulated boundary.
5

A
(i) A graph (not shown) of —* has been drawn for increasing 0, and it has been noticed that the ratio
5

steadily increases to a maximum of 48.42” and 30.57° and then decreases to zero as 0, increases
further. The parameters @ and 71, are almost insignificant in this case.

(iii) The nature of the graph for the ratio —% is interesting in the sense that at normal incidence the

5
amplitude of the incident and reflected SV-wave 4; and A respectively becomes equal. Again in the
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(1)

(i)

range 33 257 < 0, < 90° the amplitudes are equal. Further, a sharp decrease has been observed in the

A o . -
range 0<0,<1 2.38" . Thereafter the ratio —* steadily increases to unity as shown in Fig.12.
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Fig.12. Variation of =5 for incident SV-wave for insulated boundary.
5

Reflection of SV-waves on rigid isothermal boundary

. . . A
In Fig.13, significant changes have been observed in the values of =2 due to the two temperature
5

parameter. The values of the graph for the two temperature LS-model and dynamical CCTE model
steadily increase from zero to the maximum of 0.03886 and 0.02732 respectively at about 6, ~ 29.8°.

They graphs go to zero as 0, increases in the range 30.33" < 0, < 90° . In this case also, the relaxation

oo . . A
constant create insignificant changes in the values of the ratio =2
5

A - . .
In the graph of A—4 (not shown) it is noticed that the nature of the graph is almost the same as observed
5

in the former case D (i) (Fig.13) for % except the fact that for all cases (a), (b), (c), (d) as mentioned
5

in section C (i) the graphs almost coincide.

A A
(ii1)) The nature of the graph of A_6 is almost similar to that of =% in the case of insulated boundary (Fig.12

A
5 5
as explained in section C (iii)). The difference observed in this case is that the ratio reaches zero from
unity at 6, = 24.65" but returns to unity almost vertically at about 6, = 3 0.38 .
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Nomenclature

a —two temperature parameter
¢, —specific heat at constant strain

K — thermal conductivity
k —wave number
T, — the reference temperature

a, = — ¥ coefficient of thermal expansion

(30+2p)
A and p — Lame constants
p —mass density
1, —relaxation time parameter
¢ and y — thermoelastic potential functions
® — circular frequency of wave
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