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In many applications of vibration technology, especially in chassis, air springs present a common alternative 
to steel spring concepts. A design-independent and therefore universal approach is presented to describe the 
dynamic characteristic of such springs. Differential and constitutive equations based on energy balances of the 
enclosed volume and the mountings are given to describe the nonlinear and dynamic characteristics. Therefore all 
parameters can be estimated directly from physical and geometrical properties, without parameter fitting. The 
numerically solved equations fit very well to measurements of a passenger car air spring. In a second step a 
simplification of this model leads to a pure mechanical equation. While in principle the same parameters are used, 
just an empirical correction of the effective heat transfer coefficient is needed to handle some simplification on 
this topic. Finally, a linearization of this equation leads to an analogous mechanical model that can be assembled 
from two common spring- and one dashpot elements in a specific arrangement. This transfer into ”mechanical 
language” enables a system description with a simple force-displacement law and a consideration of the non-
obvious hysteresis and stiffness increase of an air spring from a mechanical point of view. 

 
 Key words: air springs, dynamic characteristic, transfer thermodynamic to mechanic. 

 
1. Introduction 
 
 Air springs have become established in vibration isolation applications in industrial facilities and in 
chassis with the requirement of a load-independent working level. Figure 1 gives an overview of different 
types of air springs. By controlling the internal pressure, the reaction force can be adjusted to keep a constant 
height level. The stiffness and the vibration behavior can be designed independently from the preload force. 
This is a great advantage compared to steel spring concepts, where a compromise has to be chosen in this 
regard. During the suspension process the air volume (enclosed between the bellows and mounting elements) 
undergoes a thermodynamic change of state, which leads to a heat transfer. As mentioned in Kornhauser and 
Smith (1993), Kornhauser (1994) for gas springs, this causes a hysteresis in the characteristic and stiffness-
increase in a specific frequency range. Figure 2 shows three measured characteristics within this range. The 
arising of hysteresis is evidently for the middle characteristic curve. The rise of the peak forces, due to the 
increasing stiffness becomes obvious in the two characteristic curves of the higher frequencies. 
 This work estimates the dynamic behavior by the principle of energy balances. This approach is not 
entirely new and has already been formulated by Pelz and Buttenbender (2004), but just for an idealized air 
spring. Therefore no force- displacement equations were given to model real air springs. The authors 
concluded that the ratio between the two boundary stiffnesses for isothermal and adiabatic change of state 
must be the same as the isentropic exponent .1 4   of air. As becomes apparent, in general this factor 
depends on the geometry of the mounting elements. For passenger car air springs it lies between 1.2 and 1.6. 

                                                 
* To whom correspondence should be addressed 



128  F.Löcken and M.Welsch 

 

 
 
Fig.1.  Overview of air spring types following (Voß, 1988): (a) convoluted air spring; (b) unrestricted air 

spring; (c) rolling lobe airspring. 
 
 However, the most common derivation for modeling an air spring deals with an equilibrium of forces 
(Chang, 2008; Quaglia and Sorli, 2001; Schützner et al., 1994) where the thermodynamics is simply 
considered by the change of pressure. In general, this assumption leads to models with limited validity for 
dynamic issues. With such an approach the thermodynamics and the bellow elasticity are irregular 
superimposed, by defining a so-called effective area. Further an irregular fitting of the physically constrained 
isentropic exponent of air is used in practice to match measurements. 
 

 
 
Fig.2.  Air spring characteristic curves measured for different frequencies: (a) 0.001 Hz; (b) 0.022 Hz; (c) 

1.024 Hz (N.N., Int. doc. Trelleborg Vibracoustic, 2013). 
 
 In all these models the differential, physical correlation between the displacement area and volume 
are not taken into account. This observation was first introduced by Welsch (2007) who gives a force-
displacement law for the isothermal and adiabatic special cases with splitting the system into pure 
thermodynamic stiffness and the bellow elasticity. Massmann (1995) calculated the volume compression and 
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the bellow elasticity with a coupled continuum approach via FEM. However the dynamics of heat exchange 
are still ignored. 
 This work focuses on the explanation and prediction of the thermodynamic part of the air spring 
stiffness. A new derivation of the energy balances is presented. It expands the energy balance principle of 
Pelz and Buttenbender with the superimposing approach of Welsch. In addition, it takes the heat transfer and 
storage in the mountings into account. This enables a design-independent and therefore universal approach to 
describe the non-linear dynamic characteristic of air-springs by differential and constitutive equations. 
Therefore all parameters can be estimated directly from physical and geometrical properties, without 
parameter fitting. 
 Simplifications of the heat transfer and a constitutive assumption about the volume change as a 
function of displacement lead to a pure mechanical equation. While in principle the same parameters are 
used, just an empirical correction of the effective heat transfer coefficient is needed to handle some 
simplifications on this topic. 
 Further, a linearization of the equations gives rise to a mechanical three-parameter model, consisting 
of two spring elements and one dashpot element. This transfer into ”mechanical language” enables a linear 
system description with a simple force- displacement law that can be analytically solved in the frequency 
domain. The parameters of this mechanical three-parameter model can be directly expressed by the 
thermodynamic and geometric parameters of the enclosed air volume. 
 Finally, the dynamic system behavior of a passenger car air spring is simulated to estimate the 
validity of the given approach. The numerically solved non-linear thermodynamic model fits very well to 
measurements. Because the mechanical three- parameter model corresponds to linearization, the non-linear 
characteristic disappears, but the prediction of the hysteresis and stiffness increase is still accurate. 
 
2. Air spring models 
 
2.1. Non-linear thermodynamic basic equations 
 
 Figure 3 shows an air spring in design-position and deflected position, including the state variables 
of the enclosed air and the heat flows. The spring is divided into two control volumes to determine the 
energy interaction between the enclosed air, the mounting elements (incl. the bellows) and the environment. 
 

 
 
Fig.3.  System borders of the control volumes of an air spring in (a) design-position and (b) deflected 

condition. 
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 The first control volume corresponds to the air volume enclosed in the spring and is termed system 1 
in what follows. The other system border runs along the outer contour of the spring, so the mounting 
elements and the rolling lobe are merged in one control volume (system 2). 
 The balance of the internal energy as scalar formulation of the first law of thermodynamics describes 
the process of heat conversion, i.e., the conversion of kinetic energy into internal energy 
 

  .
2 2

in in out out
ext in out

in out

dm c dm cdU dQ
P h h

dt dt dt 2 dt 2

   
           

   
       (2.1) 

 
 The time change of the inner energy state /dU dt U   is the sum of the heat flows transported across 
the system border /dQ dt Q  , a general external power transfer extP  and the energy change caused by the 

material transport  / , /in in out outdm dt m dm dt m   . 

 Usually the air volume (system 1) is closed, so no material transport occurs between the systems 

 m 0 , but heat can be transported across the system borders.* Consequently, the general energy balance is 

reduced to 
 
  .extU Q P            (2.2) 

 
 According to the second law of thermodynamics, heat flows in the direction of the temperature 
gradient. Fourier‘s law for one-dimensional heat conduction is defined by 
 
      for  w w wQ A T T T T    ,       (2.3) 

 
with the effective surface wA  at the system border and the heat transfer coefficient  . The general power 

term extP  for the air volume can be expressed by the relationship 
 
  extP pV             (2.4) 
 
where /V dV dt  is the time change of the volume and p is the hydrostatic pressure within the volume. In 
general, an amount of potential energy is stored in the fiber-reinforced bellow and the mounting elements. 
However, they cannot be directly reduced to a scalar formulation, so they are disregarded in this work. The 
stiffness components of the bellow can be added separately by superimposing a parallel stiffness to the air 
spring for a decoupled approach. 
 For expected temperature changes of less than 100 K , the changes of the inner energies U  can be 

described for both systems by constant isochoric heat capacities vc  for the air volume and ic  for the 
mounting elements 
 

                                                 
* The mass flows become relevant in balance equations of filling processes or systems with several volumes, such as air 
spring dampers (ASD). Consideration of such multi-volume systems can be found, e.g., in the works of Pelz et al. 
(2002), Pelz (2007) and Lee and Kim (2007). 
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with T  or wiT  for the changes of the inner temperatures and Lm  or im  for the constant masses.† The index n 
indicates the number of components integrated in system 2. 
 Due to the low wall thicknesses of the mounting elements the effective surfaces and transfer 
coefficients during heat transport can be assumed to be of equal size for both system borders. With the 
ambient temperature uT  and the flow direction of the heat, Eq.(2.2) to Eq.(2.5) can be summarized as 
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   (2.6) 

 
 Hence the air spring is described by two (non-linear) differential equations, which are coupled to 
each other due to the heat transport via the temperatures T and wiT . System 2 denotes an additional energy 
store, which is important to predict the correct frequency range of the hysteresis. 
 
2.2. Non-linear mechanical model with simplified heat transfer 
 
 To transfer Eq.(2.6) to a pure mechanical model it is assumed that the components are thin in the 
sense of heat transfer and thermal storage in the mounting elements can be neglected. Consequently, the 
individual heat transfers through the mounting elements are merged in one effective heat flow 

 eff uQ kA T T    and Eq.(2.6) can be reduced to 

 
   = ,L v wim c T pV kA T T 0            (2.7) 

   

with .i ikA k A  

 
 In this context, the defined heat transmission coefficient kA  is the sum of the transfer and 
transmission coefficients of individual mounting elements i ik A . The inverse heat transmission coefficients 

/ i i1 k A  are composed of the serially connected transfer resistances 
 

  .i
i i i i i i

i i 1 1 m m 2 2

1 1 1

k A A A A


  
  

        (2.8) 

 

                                                 
† In general, the heat capacity of gases depends on the temperature, but can be assumed to be constant here on account 
of the slight temperature changes. The following applies to air: ( ) . /vc 173K 0 722kJ kgK  and ( ) . /vc 373K 0 725kJ kgK  

Baehr (2008). 
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 Here i
1  and i

2  describe the heat transfer coefficients on the surfaces i
1A , i

2A  and  i i
i m mA   

describes the heat transmission resistance of the component with the wall thickness i , the heat conductivity 
i
m  and the average area i

mA . The air can be described by the ideal gas law for the expected temperatures 

 
  .LpV m RT           (2.9) 
 
 With the derivation    LT pV pV m R    and ( )vR c 1   , with the isotropic exponent  , the 

gas constant R and the specific heat capacity vc , Eq.(2.7) can be reduced to the absolute variables pressure p 
and volume V 
 

2
1

KV
p p K 0

V V

 
     

 


 , (2.10) 

 

with  and ( ) .1 2 u
L v

kA
K K 1 kAT

m c
     

 
 Hence, the inner temperature T is eliminated. In the next steps the thermodynamic variables ( )p t , 

( )p t , ( )V t , ( )V t  must be substituted with the mechanical variables: force ( )F t , displacement ( )z t  and their 

time changes ( )F t , ( )z t . The absolute pressure p within the spring and the constant ambient pressure up  are 

coupled with the force via the differential work  udW p p dV   . Using the abbreviation dV dz V   the 

spring force can be expressed as 
 

  .uF p p V     (2.11) 

     
 As a result, the spring force is a function of the absolute pressure, the ambient pressure and the 
change of the volume:  , ,uF f p p V  . To insert Eq.(2.11) in Eq.(2.10), the volume change and 

displacement must be brought into a direct functional connection. To keep the balance equation generally 
valid for different spring types, only the constitutive assumption is made that the spring volume is 
exclusively a function of the displacement: ( )V V z  and does not depend on other variables. In general, the 
volume is affected by pressure change, depending on the elasticity of the bellow. However, the bellow 
elasticity was disregarded, so this assumption seems to be consequent in this case. A Taylor-series expansion 
around the design- position  z 0  leads to 

 

( )
!

n
n 2 3

0 0 1 2 3n
n 1 z 0

1 d V 1 1
V z V z V V z V z V z

n 2 6dz



 

        (2.12) 

 

with the coefficients  , , ... n n
n 1 2 3 z 0

V V V V d V dz


  .  

 
 Assuming a rotationally symmetrical design of the spring, the change of volume is primarily defined 
by the rolling of the bellow on the mountings. The geometric interpretation and estimation of the volume 
coefficients  , , ...1 2 3V V V  is quite extensive and therefore not examined in more detail at this point. The 
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polynomial form of the Taylor expansion gives the possibility to describe the time derivations of the 
variables V and V   by the displacement velocity z  
 

  ...2 3
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V V z V z V z V z z

dt 2 6
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 Equation (2.10) can now be expressed as a function of force and displacement 
 

.1 u 1 2
V V V V

F F z K p V z K K 0
V V V V

                       
    (2.14) 

 
 Consequently, the time derivation of the force is a function of the displacement, velocity and force 

itself:  , ,F f F z z  . 

 
2.3. Linearized mechanical model with simplified heat transfer 
 
 By neglecting the mounting elements as heat storage, using the ideal gases law (see Eq.(2.9)) and a 
decoupled equation of the bellows volume (see Eq.(2.12)), the differential equation system in Eq.(2.5) is 
reduced to an inhomogeneous differential equation of first order (see Eq.(2.14)). As a result, the 
thermodynamic behavior of an air spring, including the non-linearity of the characteristic curve, is 
transferred to a mechanical model. Unfortunately, this differential equation cannot be solved analytically. In 
order to be able to estimate the dynamic system behavior without numerical applications, Eq.(2.14) must be 
converted into a linear differential equation around a stationary position of equilibrium (working point WP). 
 The air spring is in a stationary state if the displacement ( )z t  and the force ( )F t  do not undergo any 

time change  ,F z 0  . With regard to Eq.(2.14), this condition is valid for every displacement ( ) const.z t  . 

Hence, the design-position z 0  is selected for the linearization:  T0 0 0 0F F z z 0x  

 T00 F 0 0 . The variable 0F  describes the static preload of the spring that corresponds to the weight 

acting on the spring. The linearization is given by ( ) ( )f  0x J x xΔ  with the Jacobian matrix: 

( ) f F f F f z f z           0 0 00
0 x x xx

J x   . It contains the partial derivations of the differential 

equation ( )f x  according to the time-changing variables x at the point 0x . Hence, the linearized form of 
Eq.(2.14) can be expressed by the following equation 
 

 1 2 0 3 4J F J F F J z J z 0      , (2.15) 
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with the coefficients of the Jacobian matrix 
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  .
2
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z V V
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 Since both the series expansion of the volume function and linearization occur around the expansion 
point z 0 , the terms , ,V V V   are reduced within the Jacobian coefficients to the constant volume 

parameters , ,0 1 2V V V  from Eq.(2.12). The variables 1K  and 2K  correspond to the coefficients in Eq.(2.10). 
Eq.(2.15) is well known in the linear system theory and can be interpreted as a mechanical analogous model 
as shown in Fig.4. It consists of the parallel connection of a linear spring element with the coefficient 0c  and 

a Maxwell element, consisting of a serial connection of a spring element with the coefficient 1c  and a linear 
dashpot element with the coefficient b.  
 

 
 
Fig.4. Comparison of (a) thermodynamical model and (b) mechanical analogous model for an air spring. 
  
 This arrangement can be deduced from force equilibrium in a familiar way with two coupled 
equations 
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leading to 
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0 0 2 2 0
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c cb
F F F c z b 1 z c z b 1 z

c c c

   
          

   
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Further, this equation can be reduced by local consideration  2z 0  to 

 

.0
0 0

1 1

cb
F F F c z b 1 z

c c

 
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 
   (2.18) 

 
A coefficient comparison between Eq.(2.15) and Eq.(2.18) provides the link between the  

thermodynamic and the mechanical model. By regarding the relation: ( )0 0 L v up V m c 1 T    the mechanical 

parameters can be expressed by thermodynamic parameters in terms of the pressure 0p  
 

( )
2

4 1
0 0 0 u

2 0

J V
c p p p V

J V
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( )
2

1
1 3 0 0

0

V
c J c p 1

V
      , (2.19) 

 

 20 11
1

2 u

p VJ
b c

J kAT
  , 

 
or the preload 0F  in design-position 
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 Comparing Eq.(2.15) and Eq.(2.18) with Eq.(2.14), it becomes evident that the simplified 
mechanical three-parameter model is restricted to the properties around the design-position. As a result of the 
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linearization, the non-linear characteristic is lost, but the dynamic characteristic can be modeled in a simple 
manner. 
 
2.4. Analytical solution of the three-parameter model 
 
 The dynamic transfer characteristic of technical systems is usually presented in the frequency 
domain. In the meaning of the linear system theory Eq.(2.18) to Eq.(2.20) describe a phase-lifting system 
with 1PDT  behavior and the transfer function 
 

  ( ) v
p

1

1 j T
C j K

1 j T
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, (2.21) 

 
with the coefficients 
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 This transfer function can be divided into the explicit expression of stiffness ( ) ( )c C j    

 

  ( )
2 2

v
p 2 2

1

1 T
c K

1 T


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
, (2.22) 

 
and the loss angle  ( ) arg ( )C j     

 

  
 

( ) arctan .v 1
2

1 v

T T

1 T T

  
    
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 (2.23) 

 

pK  is the proportional gain and corresponds to the stiffness 0c  of the analogous model (see Fig.4). In the 

quasi-static borderline case for low frequencies, the transfer function ( )C j 0  is reduced to this gain. The 
change of the inner temperature T is totally compensated by the heat transport across the system border. 
Hence, the thermodynamics proceeds isothermally for low velocity and 0c  is the isothermal or quasi-static 

stiffness statc  
 

    .
2

1
stat 0 0 0 u 2

0

V
c c p p p V

V
     (2.24) 

 
 For high frequencies j , the first part in Eq.(2.21) can be neglected. The transfer function 

corresponds to the sum of the two stiffnesses 0 1c c . The high velocity of the suspension process disables 
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the heat transport across the system border. Consequently, the thermodynamics proceeds adiabatically with 
the dynamic stiffness dync  

 

    .
2

1
dyn 0 1 0 0 u 2

0

V
c c c p p p V

V
       (2.25) 

 
 From Eq.(2.24) and Eq.(2.25), it is evident that only in the special case 2V 0  the ratio of dynamic 
(adiabatic) and static (isothermal) stiffness corresponds to the isentropic exponent   as shown by Pelz and 
Buttenbender (2004) 
 

  .dyn 1
2

stat 0

c c
V 0 1

c c
       (2.26) 

 
 From a mechanical point of view, both cases can also be deduced from the three-parameter model in 
Fig.4. For slow displacements, the dashpot element b behaves like an ”endlessly” flexible body. So the 
spring element 1c  decouples completely from the spring movement and only the spring element 0c  gains the 
force. For a sufficiently high velocity, the dashpot behaves like a rigid body and the force is also gained by 
the 1c  element. Consequently, both springs are in parallel connection. 
 The complete course of the transfer function from Eq.(2.21) is shown in the Bode diagram in Fig.5. 
Additionally, the equivalent Nyquist plot of the complex solution is given. In Fig.5b it can be seen that no 
phase shift occurs between the displacement and response force on the outer limits. Consequently, the 
corresponding values of the Nyquist plot are completely on the real parts and the thermodynamics 
theoretically occurs reversibly for these frequencies. 
 

 
 

Fig.5. Bode diagram for (a) stiffness; (b) loss angle and (c) Nyquist plot of an air spring. 
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 The occurring phase shift in the transfer and the associated damping is determined by the time 
constants 1T  and vT . Both time constants depend on each other and are defined by the heat transmission 

coefficient kA  (see Eq.(2.21)). From a mechanical point of view, the damping seems to be viscous in 
character. However, the mechanism is not the change of kinetic energy into heat as a result of inner friction, 
but rather the heat transmission from air volume to the environment.  
 
3. Simulation and validation 
 
 To estimate the validity of the previous equations the dynamic system behavior of a passenger car air 
spring (presented in Fig.6) is simulated in this section. This air spring is designed with a very thin sleeve 

 2mm   with a single axial fiber layer. The influence to the overall stiffness can be neglected for this 

design. Additionally, the outer support fulfills the previously discussed neglecting of volume dependence 
affected by pressure change. The corresponding measurements were made without damper and jounce 
bumper to get the pure air spring characteristics. The material values used for the simulation are summarized 
in Tabs 1-4. Comments to the parameter assignments are given in the Appendix. 
 

 
 
Fig.6. (a) Components of an air spring (Audi A8 suspension strut) (TBVC, 2013); (b) bellows structure of 

axial and cross layer bellows. 
 
 Equation (2.5), Eq.(2.9) and Eq.(2.11) build the non-linear thermodynamic model. It is numerically 
solved in MATLAB Simulink. Therefore it is difficult to access the interaction of different parameters 
regarding the overall system behavior. This access is the great advantage of the mechanical three-parameter 
model (Eq.(2.18) to Eq.(2.20)). 
 The dynamic transfer characteristic of technical systems is usually presented in the frequency 
domain (see Fig.5). In contrast to the mechanical three-parameter model, the frequency responses of the 
thermodynamic model and measurements can only be determined indirectly from the non-linear hysteresis. 
The process applied here is based on the method described by Puff (2009) for evaluating air spring 
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characteristic curves. To determine a representative stiffness ( )c  , the average tangent-stiffnesses of the 
upper and lower flanks are taken. 
 
Table 1. Material data according to Giek (1995). 
 

 [ / ]W mK  [ / ]c J kgK  [ / ]3kg m  

Upper mounting 
(cover) 50 510 7900 

Axial bellow 0.2 1800  
Outer support & 
piston 204 879 2600 

 
Table 2. Material data for air as an ideal gas according to Baehr (2008). 
 

[ ]0p bar  [ ]0 uT T K  [ / ]R J kgK  [ / ]vc J kgK  

9.2 300 287.09 717.71 

 
Table 3. Volume-parameter according to Fig.10. 
 

[ ]3
0V m  [ ]2

1V m  [ ]2V m  

2.26·10-3 -9.01·10-3 7.84·10-3 

 
Table 4. Heat transfer coefficients and effective surfaces according to Fig.9. 
 

 
[ / ]2W m K  [ ]m  [ ]1 2

1A m [ ]2 2
1A m [ ]1 2

2A m [ ]2 2
2A m  [ / ]kA W K  *[ / ]kA W K

Upper 
mounting 17.5 2.5·10-3 2.14·10-2 2.01·10-2 4.65·10-2 4.92·10-2 

0.97 2.73 
Axial 
bellow 13.1 1.8·10-3   3.68·10-2 3.79·10-2 

Outer 
support 11.6 1.5·10-3   3.79·10-2 3.89·10-2 

Piston 15.5 2.0·10-3 5.15·10-2 5.67·10-3 3.34·10-2 3.56·10-2

 
 The area enclosed by the hysteresis corresponds to the energy dissipated per cycle. With the 
hysteresis width ( )bh  , the average stiffness ( )c   and the amplitude of displacement ẑ , an approximation 
by an ideal elliptical hysteresis leads to the determination of the loss angle 
 

  
( )

( ) arcsin .
ˆ( )

bh

2c z

 
     

        (3.1) 
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 Figure 7 shows the Bode diagram of the two models and the corresponding measurement. The 
numerical solution of the thermodynamic model is in particular very close to the measurement. The 
characteristic cut-off frequency of the damping maximum is 0.025 Hz. The curve of the linear three-
parameter model is shifted to lower frequencies. Due to the simplification of heat transfer, the model predicts 
a damping maximum at 0.006 Hz. However, accurate frequency responses can be reached by using an 
empirical gain of the effective heat transfer *kA kA  (see Tab.4). So fortunately the necessary 
simplifications of the heat transfer can be simply adjusted. 
 Regarding the graph in Fig.7a, the simulated values are little but evidently below the measured 
values. The difference of . /1 5 N mm  is in good agreement with the expected single bellow elasticity. A 
high correspondence occurs for the loss angle at the damping maximum. But beside the maximum the 
predicted values fall increasingly below the measurement. The neglect of the damping of the elastomeric 
bellow may cause this deviation. In the simulations, only the damping due to the thermodynamics is 
considered. Therefore no hysteresis arises in the isothermal and adiabatic borderline cases. However, in 
measurements of air springs the damping of the bellow is always superimposed. 
 

 
 

Fig.7. Bode diagram (a) stiffness and (b) loss angle of the simulated model versions. 
 
 Additionally to the frequency domain, Fig.8 shows three complete hystereses from the time domain. 
A very good correspondence between the thermodynamic model and the measurements is confirmed. The 
three-parameter model corresponds to linearization; consequently a purely elliptical hysteresis shows up and 
the non-linear characteristic curve is absent, but the hysteresis and stiffness increase are still accurate. 
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Fig.8. Comparison of the simulated and measured characteristic curves: (a) 0.001 Hz; (b) 0.022 Hz; (c) 1.024 Hz. 
 
4. Conclusion 
 
 The stiffness and hysteresis of an air spring were examined in this work. At first a thermodynamic 
model, based on energy exchange between the air volume, the mountings and the environment is given. A 
very good correspondence between simulation and measured hysteresis of a passenger car air spring can be 
confirmed. All parameters of the model are expressed by physical constants and geometrical information. No 
fitting procedure is needed. The thermodynamic expression describes a non-linear and coupled differential 
system with time dependent volume and pressure functions. These equations can be simplified into a pure 
mechanical force-displacement law. However, still no analytic solution can be found. So, finally linearization 
around the design-level leads to an equivalent representation comprising two springs and one dashpot in a 
specific arrangement. With this analogy the non-obvious dynamical behaviour of an air spring can be 
explained quite simply from a mechanical point of view. While the hysteresis formation of a damper ought to 
be familiar to every engineer, it is not immediately obvious why an air spring likewise demonstrates viscous 
damping according to the hysteresis. 
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Nomenclature 
 
 wA  – effective surface 

 , ,i i i
m1 2A A A  – effective surfaces, average surface of the i ’th mounting element for reduced heat transfer 

 b – coefficient of the linear dashpot element 
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 ( )C j  – complexe transfer function of an air spring 
 ,0 1c c  – coefficient of the linear spring elements 

 ic  – heat capacity of of the i’th mounting element 

 ,in outc c  – heat capacity in the in- and output mass transport 

 vc  – heat capacity of air as an ideal gas 

 ( )c   – frequency depending stiffness of an air spring 
 F – air spring force 
 0F  – preload of an air spring 

 ,in outh h  – heat content in the in- and output mass transport 

 J – Jacobian Matrix 
 , , ,1 2 3 4J J J J  – coefficients of the Jacobian Matrix J 

 pK  – proportional gain in the transfer function ( )C j  

 kA – heat transmission coefficient 
 i ik A  – heat transmission coefficient of the i’th mounting element 

 , Lm m  – mass of the air volume V 

 im  – mass of the i’th mounting element 

 ,in outm m  – masses of the in- and output mass transport 

 extP  – external power transfer 

 , up p  – internal pressure in the air volume V, ambient pressure 

 Q – thermal energy in the air volume V 
 R – specific gas constant of air 
 , uT T   – temperature of the enclosed air volume V, ambient temperature 

 wiT  – average wall temperature of the i’th mounting element 

 U – internal energy of the enclosed air volume V 
 V – enclosed air volume 
 0V   – design volume of an air spring 

 , ,1 2 3V V V  – Taylor coefficients of the volume function ( )V z  

 0x   – vector for linearization 

 z – displacement in z- direction 
    – heat transfer coefficient 

 ,i i
1 2   – heat transfer coefficient for reduced heat transfer 

 i   – wall thickness of the i’th mounting element 

   – isotropic exponent of air 

 i
m  – average heat conductivity of the i’th mounting element 

 ( )   – frequency depending loss angle of an air spring 

 
Appendix A: Comments to parameter assignment 
 
 To enable the simulation, all necessary parameters can be estimated from physical constants and 
geometrical information. No fitting process is needed. The determination of the kA factor (see Eq.(2.8)) 
requires an effective surface area. This area can be estimated by regarding the geometry as idealized bodies 
with rotatory symmetry. Figure 9 shows the geometry of the components idealized by the two simplified 
basic forms of a flat circle area and hollow cylinder. Thus the needed average areas can be determined by 
analytical equations of the individual areas 
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 

 

(flat circle area)

(hollow cylinder).

ln

1 2
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2 1
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A A
A

A

A







 
 
 

 (A.1) 

 
 The specific material values: heat conductivity  , specific heat capacity c and density  ‡ for solid 
bodies and gases can be determined directly from table reference literature and standard literature like 
(Baehr, 2008; Giek, 1995). 
 

 
 
Fig.9. Simplified rotationally symmetrical basic forms: (a) cup; (b) bellow and outer support; (c) piston. 
 
 The heat transfer coefficient i  depends on the component geometry and flow conditions apart from 
the material. As a result, they cannot be determined directly as constant material values from table reference 
works (DIN EN ISO 6946). For this reason, the transfer coefficients were determined using cooling over 
time measurement for free convection of a single bellow 
 

 
( )

.

i wi

i i

A
t

m cu

0 u

T t T
e

T T

 
  
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


 (A.2) 

 
 The temperatures 0T  and uT  are the initial temperature of the heated component and the constant 
ambient temperature. The other variables are according to the material values listed in Tab.1. 

 At least the volume function ( )V z , displacement area /dV dz  and the coefficient /2 2d V dz  can 
be directly determined by geometrical consideration of the piston shape. Fig.10 shows the curves 
corresponding to the air spring, presented in Fig.6. In the design-position  z 0 , the function values 

correspond to the parameters 0V , 1V  and 2V  of the linearized system from Eq.(2.15). The values used for 

the three-parameter model are listed in Tab.3. For the thermodynamic model the volume function ( )V z  

and its derivation /dV dz  from Figs 10a, b are completely deposited as discreet look-up tables. Because of 

                                                 
‡ In gases, the density depends on the temperature or the thermodynamic condition of the gas. For this reason, the mass 
of the air volume here was determined using the ideal gas law. 
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the outer support in the presented example the volume functions can be deduced by constitutive 
geometrical equations based on rotation integrals. But in consequence of the extensive derivation and 
focusing the transfer from a thermodynamic to a mechanical system in this work, the procedure is not 
being explained in detail. For further information the works by Prasil et al. (2005; 2006) present a 
geometric approach for convoluted and multi-convoluted air springs (see. Fig.1a), based on differential 
equations. 
 

 
 
Fig.10.  Associated (a) volume function ( )V z ; (b) displacement area /dV dz ; (c) volume coefficient 

/2 2d V dz . 
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