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Modelling accuracy of a car steering mechanism with a rack and pinion and McPherson suspension is 
analyzed. Geometrical parameters of the model are described by using the coordinates of centers of spherical 
joints, directional unit vectors and axis points of revolute, cylindrical and prismatic joints. Modelling accuracy is 
assumed as the differences  between the values of the wheel knuckle position and orientation coordinates 
obtained using a simulation model and the corresponding measured values. The sensitivity analysis of the 
parameters on the model accuracy is illustrated by two numerical examples. 

 
 Key words: steering mechanism, suspension, model, accuracy. 

 
1. Introduction  

 
 The steering mechanism with rack and pinion and McPherson suspension is the most common 
system used in passenger cars. Although, the planar model of steering linkage has received a lot of attention 
for the purpose of minimizing steering errors, no attempt has been made so far to investigate the sensitivities 
of spatial orientations of the wheel knuckle relative to variation of geometrical parameters (Meissonier et al. 
[1]). The objective of the proposed optimization is to minimize the maximum steering error during cornering. 
This is followed by a sensitivity analysis to predict how the steering error is affected by manufacturing 
tolerances and assembly errors. Since the optimized error is very sensitive to the variations of the parameters, 
the sensitivity optimization of the steering linkage is performed in an integrated manner. 

 A typical independent-type McPherson strut suspension system of Fig.1 consists of a revolute joint at 
point A

1 
and spherical joints at points A

2
, A

3
, B

1
, B

3
, and cylindrical joint at point B

6
, respectively. Link A

1
B

1 

represents the lower arm connected as a revolute joint with the chassis and as a spherical joint with the wheel 
assembly. Link A

3
B

3
 represents the tie rod connected as a spherical joint with the chassis and the wheel 

assembly. Also, link A
2
B

6 
represents the strut connected with the spring-damper and as a cylindrical joint 

with the wheel assembly and as a spherical joint with the chassis. Therefore, this McPherson strut suspension 
can be modeled as a platform parallel mechanism with three legs: 1. Revolute-Spherical (R-S) link for lower 
arm modeling, 2. Spherical-Spherical (S-S) link for tie- rod modeling and 3. Spherical-Cylindrical (S-C) link 
for strut modeling.  
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  Vehicle wheels are installed to the chassis frame with geometrically appropriate angles and distances 
considering the drivability, stability and steerability. Those geometrical factors related to the wheel positions 
are called the static design factors which are important to be determined at an early design stage since they 
determine the dynamic characteristics of the vehicles. Those are caster angle, camber angle, toe angle, and 
kingpin inclination angle.  

 The static design factors of the suspension system are: the wheel camber angle (γ), wheel steer angle 
(δ), caster angle (  ) and kingpin inclination angle ( ) of the steering axis. Figure 2 shows the variations of 
the wheel steer angle during the bump/rebound motion, respectively. Similarly, the variations of kingpin 
inclination angle and caster angle can be obtained.  

 In this paper, a sensitivity analysis for the kinematic static design factor determining the motion 
characteristics of suspension systems and a sensitivity analysis and optimization are carried out with which 
the designers can consider the riding quality and steering stability in suspension system design and predict 
the change of suspension factors required depending on the vehicle characteristics. This may help the 
designers to determine layout of the suspension system and to develop the integrated optimum design system 
of suspension (Mantaras et al. [2]).  
 

   

Fig.1. Steering mechanism with rack and pinion and McPherson suspension. 
 

2. Evaluation of the modelling accuracy 
 

The inaccuracy in mechanism modelling arises because of dimensional errors due to manufacturing, 
elastic deflections in assembling and caused by external load. For the evaluation of the modelling accuracy, 
the first–order differential equation is assumed, by inspecting the errors in the position and orientation of the 
knuckle coordinate frame due to dimensional errors. 
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T

x y z x y zb b b     b  - vector of coordinates  describing the position and orientation of the knuckle 

coordinate frame with respect to the body frame; 

  ,... .. ] .[
T T

1 n 1 nl l   l α – vectors of linear and angular dimensions of the mechanism;  

Δli , Δαi – tolerances of the dimensions under consideration;  
s – variable used to describe the strut position;  
p – variable describing the rack displacement, proportional to the angle of the steering wheel. 

Sensitivity analysis renders it possible to predict how the steering error is affected by manufacturing 
tolerances and assembly errors. The steering error is very sensitive to the variations of the parameters. The 
steering error is determined as the difference between the nominal value of the steer angle (N(L/R)) obtained 
by using formulae (1- 23) with the nominal values of mechanism dimensions (given by the producer) and the 
simulated value (p(L/R)) obtained with changed (by  2%) values of the dimensions (a3z, b12, b13, b63,d33) with 
respect to their nominal values. 

 
     p 2N L R L R      ,  

 
     p 2N L R L R      . 

  

Numerical Example 1 
 
 The dimensions of the mechanism under consideration: 
d12=566.8; d11= 248.6; b07=97.0; b63=122.6; d33=255.6; b12=18.2; b13=221.7; b26=183.2; b24= 76.7; a2(-25.6; 
463.0; 75.,0); a3(-87.6; 264.0; 364.0); a1(11.8; 330.6; 207.2)[mm]; 1 =100.63o; 2 = 96.13o; lb=1289; 
ld=256; lz=528 [mm]. 
 

 
 
Fig.2. The influence of a3z on the steer angle δ versus the displacement of the strut s, calculated by using the 

simulation model for: straight ahead position, where δ oR – the steer angle of the right wheel, δ oL – left 
wheel; for the displacement of the rack (p=65), where δ R,65 – right wheel, δ L,65- left wheel. 
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Fig.3  Surfaces of variations of the steering error determined for the assumed values of the dimensions (a3z, 

b12, b13, b63,d33) different (by  2%) from the respective nominal values. 
 

 

 

Fig.4. The sections of surfaces of variations of the steering error determined for the assumed values of the 
dimensions (a3z, b12, b13, b63, d33) different (by  2%) from the respective nominal values. 
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Fig.5. Surfaces of variations of the camber angle error determined for the assumed values of the dimensions 

(a3z, b12, b13, b63, d33) different (by  2%) from the respective nominal values. 
 

 

 

Fig.6. The sections of surfaces of variations of the camber angle error determined for the assumed values of 
the dimensions (a3z, b12, b13, b63,d33) different (by  2%) from the respective nominal values. 

 
Numerical Example 2 
 
d11= 395.8; b63=126.0; d33=435.7; b12=57.3; b13=124.4; b26=51.5; a2x=271.9; a2y= -504.5;  
a2z= 616.7; a3x= 147.0; a3y=-239.9; a3z= 51.0; a1x=245.7; a1y= -308.5; a1z=22.0 [mm],  

1 = arc cos  - o o
70 22b d = 81.5o; 2  = arc cos  o o

70 63b b =98.5o; 
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Fig.7.  Surfaces of variations of the steering error determined for the assumed values of the dimensions (a3z, 
b12, b13, b63, d33) different (by  2%) from the respective nominal values. 

 

 

 

Fig.8.  The sections of surfaces of variations of the steering error determined for the assumed values of the 
dimensions (a3z, b12, b13, b63,d33) different (by  2%) from the respective nominal values. 

 
3. Formulary used for simulations 

  0 0
12 12 11c  a a , (3.1) 

 

   2 2 2 2
1 11 12 12 11 12c d a b s 2d a    , (3.2) 

 
  2 2

1 12 1D 1 c c   , (3.3) 
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     0 0 0 0 0 2
11 12 1 11 12 1 12 11 1 12c c c D 1 c         d a a a a , (3.4) 

 

   0 0 0 2 2
21 11 11 12 12 12d a s b   d d a , (3.5) 

 

       2 22 2 2 2 2 2 2
3 12 26 63 13 26 63 12c s b s b b b 2 s b b s b

                     
  (3.6) 

 

     2 22 2 2 2
4 26 63 32 33 32 26 63c s b b a d 2 a s b b

                   
 , (3.7) 

 
  0 0

5 21 32c   d a , (3.8) 

 
  2 2 2

2 3 4 5 3 4 5D 1 c c c 2 c c c      , (3.9) 

 

         0 0 0 0 0 2
23 21 3 4 5 32 4 3 5 21 32 2 5c c c c c c D 1 c             d d a d a , (3.10) 

 

  2 2
6 12c s s b  , (3.11) 

 

     2 2
7 26 26 63c s b s b b    , (3.12) 

 
  0 0

8 23 21c  d d , (3.13) 

 
  2 2 2

3 6 7 8 6 7 8D 1 c c c 2 c c c      , (3.14) 

 

         0 0 0 0 0 2
22 21 6 7 8 23 7 6 8 21 23 3 8c c c c c c D 1 c              d d d d d , (3.15) 

 

     o o 2 2 0
63 23 26 63 22 26 63s b b s b b       

b d d , (3.16) 

 

     o o o o o 2
70 22 9 63 10 22 63 4 11c c D 1 c         b d b d b , (3.17) 

 
  o o cos 9 22 70 1c   d b ,            o cos  0

10 70 63 2c   b b ,             o 0
11 22 63c  d b , (3.18) 

 
  2 2

4 9 10D 1 c c   , (3.19) 
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   
o

y
o

z

arccos arctg 21
9
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 
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, (3.22) 

 

   
o

x
o

z

arccos arctg 21
10
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c
 
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d

d
. (3.23) 

 
Conclusions 
 
 Real values of the geometrical dimensions can be identified by the estimation procedure (Knapczyk 
and Para [3]; Knapczyk and Maniowski [4, 5, 6]) and next used in simulation. The matrix of the influence 
coefficients can be used to accelerate the estimation procedure.             
 The results of the modelling accuracy of the mechanism being under consideration indicate that it 
can demonstrate selected dimensions with the biggest influence on the changes of the orientation angles of 
the wheel knuckle during vertical displacements. 
 An optimal design of McPherson strut suspension system has been studied. Also, sensitivity analyses 
for the kinematic static design factor and for reaction forces at joints were carried out, from which the effects 
of each hard point(design variable) on suspension factors can be found. These studies may be effectively 
applied to determine the suspension system layout by predicting the variations of suspension factors required 
for vehicle characteristics at early design stages. The method employed can be extended to develop the 
integrated suspension design system.  
 
Nomenclature 
 
  Input variables:    p  -  displacement of the rack; s- length of the spring-damper module. 
  Output variables:    -  wheel steer angle;   - wheel camber angle;   - caster angle;   - kingpin inclination angle. 

 iA  – centre of the joint connected the link i to the car body 

 iB  – centre of the joint connected the link i to the wheel knuckle 

 
T

i ix iy iza a a   a  – position vector of point iA  described in the body reference frame 

 
T

i ix iy izb b b   b  – position vector of point iB  described in the body reference frame 

 , ,ij ij ija b d  – position vectors: ija = i jA A , ijb = i jB B , ij i jB Ad   

 , , ,0 0 0 0
ij ij ij ija b d e  – unit vectors of the position vectors 

  iid  – i-th link length (i =1, 3) 
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