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The influence of a wall porosity on the pressure distribution in a curvilinear squeeze film bearing lubricated 
with a lubricant being a viscoplastic fluid of a Herschel-Bulkley type is considered. After general considerations 
on the flow of the viscoplastic fluid (lubricant) in a bearing clearance and in a porous layer the modified 
Reynolds equation for the curvilinear squeeze film bearing with a Herschel-Bulkley lubricant is given. The 
solution of this equation is obtained by a method of successive approximation. As a result one obtains a formula 
expressing the pressure distribution. The example of squeeze films in a step bearing (modeled by two parallel 
disks) is discussed in detail.  
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1. Introduction 
 
 Steady state radial flows and time-dependent squeezing flows of yield-viscoplastic fluids are 
encountered in a variety of fields [1-7]. These flows are found in fabrication operations such as stamping, 
injection molding, and sheet forming. Also, material properties of highly viscous fluids are measured with a 
device called the “plastometer” which incorporates a parallel-disk squeeze flow geometry [2, 8, 9]. In 
addition, such flows are encountered in lubrication systems, and there is a considerable interest as to the 
degree which viscoplastic additives enhance the load-bearing capacity of the lubricant. 
 The flows of Newtonian fluids in the clearance of a thrust bearing with impermeable surfaces have 
been examined theoretically. The bearing walls have been modelled as two disks, two conical or spherical 
surfaces. A more general case is established by the bearing formed by two surfaces of revolution [10]. 
 Porous bearings have been widely used in industry for a long time [11-15]. Basing on the Darcy 
model Morgan and Cameron first presented theoretical research on these bearings [13]. 

 Recently the problem of slide bearings with porous walls lubricated with a Bingham fluid was taken 
up by Walicki et al. [16] but the problem of a porous squeeze film bearing lubricated with the same lubricant 
was presented by Walicka [17].  
 From various models of fluids with a yield shear stress the Herschel-Bulkley fluid flow frequently 
appears in many industrial branches: polymer processing, food processing, metal processing, etc. It also 
appears in tribology modelling of semi-fluid lubricants flow [18, 19]. 

 The purpose of this study is to investigate the pressure distribution in a clearance of a squeeze film 
bearing formed by two surfaces of revolution, having a common axis of symmetry, as shown in Fig.1; the 
lower one of these surfaces is connected with a porous layer. The analysis is based on the assumption that the 
porous matrix consists of a system of capillaries of very small radii restricting the lubricant flow through the 
matrix in only one direction. 
                                                            
* To whom correspondence should be addressed 



952  A.Walicka and P.Jurczak 

 The lubricant is assumed to be a Herschel-Bulkley type for which the constitutive equation has the 
following form [20, 21] 
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where   is the shear stress, 0  is the yield shear stress,   is the coefficient of plastic viscosity, 


 is the rate 

of deformation, m  is the exponent in a Herschel-Bulkley fluid. 
 
2. Analysis of the Herschel-Bulkley fluid flow in a bearing clearance 
 
 The flow configuration is shown in Fig.1. The upper boundary of a porous layer is described by 
function R(x), which denotes the radius of this boundary. The fluid film thickness is given by the function 
h(x,t). An intrinsic curvilinear orthogonal co-ordinate system  , ,x y  is also depicted in Fig.1. 

 

 
 

Fig.1. Configuration of a thrust bearing with one porous wall. 
 
 By using the assumptions typical for the flows in a thin layer the equations of motion for a Herschel-
Bulkley fluid for axial symmetry can be presented in the form [22-24] 
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where the non-zero component of the stress tensor is [19, 23, 24] 
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In the flow of a fluid with yield shear stress there exists a quasi-solid core bounded by surfaces lying at 
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 The problem statement is complete after specification of boundary conditions which are 
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here V  is the lubricant velocity on the upper boundary of a porous matrix, op  is the outlet pressure.  

Putting Eqs (2.4) into Eq.(2.2) and integrating the resultant equations with respect to y  in the interval 

0 y h   and determining arbitrary constants from the boundary conditions (2.5) and (2.6) we obtain [23-25] 

 for shear flow ( 0y h  or 0y h h  ) 
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 for core flow ( 0 0h y h h   ) 
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 The flow rate across the clearance is given by 
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where ˆ x  is the mean velocity in the clearance; after calculations one has 
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w  - is the shear stress on the clearance wall. 

The function    m   is given as follows 
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3. Modified Reynolds equation 
 
 Integrating the equation of continuity (2.1) with respect to y  and determining the arbitrary constants 
from the boundary conditions (2.7) we obtain [19, 24] 
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the modified Reynolds equation. 
Considering the porous matrix as a system of capillaries (each of radius cr ) we may assume that the velocity 
components for the Herschel-Bulkley fluid flow in this matrix are given as [26]  
 

         , ,
mm

m m
x p y p

p p

x y

                    
 (3.2) 

where 
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p  - is the coefficient of porosity of the porous matrix. 

 Since the cross velocity component must be continuous at the porous wall-fluid film interface, one 
obtains from Eqs (3.1) and (3.2)2 the modified Reynolds equation for the pressure distribution in the bearing 
with a porous wall 
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To determine the last term in the brackets on the right hand side of Eq.(3.4) let us consider the lubricant flow 
in a porous matrix. The equation of continuity for the flow in the porous region has the same form as 
Eq.(2.1). By substituting Eqs (3.2) into Eq.(2.1) one obtains the following equation for pressure distribution 
in the porous region 
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Integrating this equation with respect to y  across the porous layer and using the Morgan-Cameron 
approximation we have [13] 
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Note that on the porous wall-fluid film interface we have also 
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When Eqs (3.6) and (3.7) are substituted into Eq.(3.4) the modified Reynolds equation takes the form 
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The final shape of solution to the Reynolds equation (3.38) is formally given as follows 
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 In reality Eq.(3.8) is non-linear with respect to the pressure gradient P  
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included into the functions    m   and    m  . One may propose the following simple iterative scheme 

to solve Eq.(3.8) with respect to P  using formulae (3.9) and (3.10) 
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Using this scheme we will obtain 
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4. Example of flow 
 
 Let us consider the pressure distribution in a squeeze film bearing presented in Fig.2 lubricated with 
the Herschel-Bulkley fluid. 
 

 
 

Fig.2. Step squeeze film bearing. 
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Assume also that the lubricant flow coincides with a small core, then ,1 1     and the functions 

   m   and    m   become linear 
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 Using the iterative scheme (3.11) and introducing the following dimensionless variables and 
parameters 
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one may present formula (3.12) for the pressure distribution in a step squeeze film bearing in a simple non-
dimensional form 
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SV  - is the Saint-Venant plasticity number (plasticity index). 
 The graphical presentation of the pressure distribution given by formula (4.3) is shown in Figs 3÷14; 
the graphs presented in Figs 3, 4, 7, 8 and 11, 12 are made for 1   (the squeezing start) whereas the graphs 
presented in Figs 5, 6, 9, 10 and 13, 14 are made for .0 5  . 
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Fig.3. Dimensionless pressure distribution in the step bearing for .m 0 5 , .K 1 0  and .1 0  . 
 
 

 
 

Fig.4. Dimensionless pressure distribution in the step bearing for .m 0 5 , .K 0 5  and .1 0  . 
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Fig.5. Dimensionless pressure distribution in the step bearing for .m 0 5 , .K 1 0  and .0 5  . 
 
 

 
 

Fig.6. Dimensionless pressure distribution in the step bearing for .m 0 5 , .K 0 5  and .0 5  . 
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Fig.7. Dimensionless pressure distribution in the step bearing for .m 1 0 , .K 1 0  and .1 0  . 
 
 

 
 

Fig.8. Dimensionless pressure distribution in the step bearing for .m 1 0 , .K 0 5  and .1 0  . 
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Fig.9. Dimensionless pressure distribution in the step bearing for .m 1 0 , .K 1 0  and .0 5  . 
 
 

 
 

Fig.10. Dimensionless pressure distribution in the step bearing for .m 1 0 , .K 0 5  and .0 5  . 
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Fig.11. Dimensionless pressure distribution in the step bearing for .m 1 5 , .K 1 0  and .1 0  . 
 
 

 
 

Fig.12. Dimensionless pressure distribution in the step bearing for .m 1 5 , .K 0 5  and .1 0  . 
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Fig.13. Dimensionless pressure distribution in the step bearing for .m 1 5 , .K 1 0  and .0 5  . 
 

 
 

Fig.14. Dimensionless pressure distribution in the step bearing for .m 1 5 , .K 0 5  and .0 5  . 
 
5. Discussion and conclusion 
 
 The above analysis has shown that Reynolds approximation may be used to model the flow of the 
Hershel-Bulkley fluid as the lubricant in the clearance of a curvilinear squeeze film bearing. 
 The obtained results are relatively simple and may be used in practical applications. 
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 For a step bearing the results have been presented for three values of the Herschel-Bulkley exponent, 
namely: for .m 0 5 , .m 1 0  (Bingham fluid) and for .m 1 5  and also for different parameters of the 
porous matrix (different values of H  and K ). 
 For .m 0 5  when squeezing starts the values of the pressure are not large and generally they 
decrease with the increase of the values of K  and H . 
 In the full squeezing the pressures are very great and they decrease very quickly with the increase of 
the values of K  and H . 
 For .m 1 0  the values of the pressure are large at squeezing and they are lager in the full squeezing; 
they decrease with the increase of the values of K  and H . 
 For .m 1 5  all values of the pressure decrease with the increase of the values of K  and H . 
 It may be concluded that for a squeeze film bearing lubricated with a lubricant of the Herschel-
Bulkley type it is more profitable to take the lubricant with .m 1 0 . 
 

Nomenclature 
 

   
   

, ,

,

m

m
k

C x t

C x t
 – auxiliary functions given by formulae (3.10)1 and (3.13)1, respectively 

 H – thickness of a porous layer 
 H  – non-dimensional thickness of a porous layer 
 h – bearing clearance thickness 
 K  – non-dimensional capillary radius of a porous matrix 
 m – exponents in a Herschel-Bulkley fluid 
 p – pressure 
 Q – flow rate 
  ,R R x  – local bearing radius 

 cr  – capillary radius of a porous matrix 

 SV – Saint-Venant plasticity number 
 V – squeeze velocity 
 ,x y   – components of the flow velocity 

   – non-dimensional step bearing clearance thickness 
 yx  – component of shear stress 

   – shear stress 
 0  – yield shear stress 

 w  – shear stress on the bearing clearance wall 

    m   – auxiliary function in the plane flow of a Herschel-Bulkley fluid given by Eq.(2.14) 

    m   – auxiliary function in the capillary flow of a Herschel-Bulkley fluid given by Eq.(3.3)1 
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