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Many electrorheological fluids (ERFs) as fluids with micro-structure demonstrate a non-Newtonian 

behaviour. Rheometric measurements indicate that some flows of these fluids may by modelled as the flows of a 
Vočadlo ER fluid. In this paper, the flow of a Vočadlo fluid – with a fractional index of non-linearity – in a 
narrow gap between two fixed surfaces of revolution with a common axis of symmetry is considered. The flow is 
externally pressurized and it is considered with inertia effect. In order to solve this problem the boundary layer 
equations are used. The Reynolds number effects (the effects of inertia forces) on the pressure distribution are 
examined by using the method of averaged inertia terms of the momentum equation. Numerical examples of 
externally pressurized flows in the gap between parallel disks and concentric spherical surfaces are presented. 
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1. Introduction 
 

In the late 1930’s Winslow [1], an intrepid basement experimentalist, observed an teresting phenomena 
when dielectric particles suspended in an insulating oil were subject to an electric field. He saw the electrically 
induced formation of fibrous particle chains aligned with the electric field and, of more interest, Winslow found 
that the effective viscosity of the suspension could be varied by orders of magnitude by varying the applied 
electric field. He also observed that the viscosity increased with the square of the magnitude of the applied 
electric field. This electrorheological response is often referred to as Winslow effects. 
 Electrorheological fluids (abbreviated to ERFs) have long held promise for use in vibration control and 
torque transmission devices, based on the characteristic dependence of their viscosity on the applied electric 
field strength. Since their discovery by Winslow [1] many kinds of organic or inorganic particles and their 
composites have been used and reported as the ER materials. When the external electric field is imposed to an 
ERF, it behaves as a viscoplastic fluid (Shulman et al.[2]; Jordan and Show [3]; Dimarogonas and Kollias [4]; 
Otsubo [5]; Jung and Choi [6]; Kobayashi et al, [7]; Shulman and Nosov [8]; Walicki and Walicka [9-11]), 
displaying a field-dependent yield shear stress which is widely variable. Without the electric field, the ERF has 
a reversible and a constant viscosity so that it flows as a Newtonian fluid. Another salient feature of the ERF is 
that the time required for the variation is very short (< 0.001 sec). These attractive characteristics of the ERF 
provide the possibility of the appearance of new engineering technology (e.g.,: nuclear and space engineering, 
mechatronics, etc.). Recently, the application of the ERF to rotor-bearing systems has been initiated by 
Dimarogonas and Kollias [4]; Jung and Choi [6] and developed by Basaravaja et al. [12]; El Wahed [13]; its 
application to vibration control has been initiated by Lee et al. [14]; Hong et al. [15, 16] and Choi et al. [17]. 
 To describe the rheological behaviour of viscoplastic fluids in complex geometries the Bingham model 
is used (Shulman et al. [2]; Covey and Stanmore [18]). Recently, the non-linear model of Shulman [19] has 
been successfully applied (Korobko [20]). The constitutive equation of this model is given as follows: 
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   
n1 m1 n

0
     
 

 . (1.1) 

 
where   is the shear stress, 0  is the yield shear stress,   is the coefficient of plastic viscosity,   is the shear 
strain rate, n and m are the non-linearity indices. By reducing the coefficients in the Shulman equation one can 
obtain simpler models describing the flow of a viscoplastic fluid. One of these models is a Vočadlo model 
(Vočadlo and Charles [21]) 

 

  nn1
0   . (1.2) 

 
 The most popular model of the ERF is a Bingham model for which m n 1   in Eq.(1). An analysis of 
many investigations (El Wahed [13]; Shen et al. [22]; Falicki [23]; Esmonde et al. [24]; Sheng and Wen [25]) 
indicates that other models may be used – such as Casson  m n , Vočadlo  m 1  and Herschel-Bulkley 

 n 1  – to describe ERFs flows. 

 Recently the Herschel-Bulkley model of a viscoplastic fluid is frequently used as the ERF. in the fullness 
of time Barnes and Walters [26] launched an ample discussion concerning the interpretation of the notion: yield 
stress; this discussion was summarized in the paper by Barnes [27]. Reflecting this discussion and also viewpoints 
presented by Corradini and Peleg [28] it seems that the Vočadlo model better corresponds to reality than the 
Herschel-Bulkley model; the reasons are as follows: 
- functional arrangement gives better possibility to derive an analytical solution for a given problem; 
- flow curve shear stress   versus shear rate   does not exhibit a nearly infinite slope at 0   as in the case of 
the Herschel-Bulkley model but attains a finite value (see Fig.1). 

 

 
 

Fig.1. Flow curves for Vočadlo and Herschel-Bulkley fluids: 
a) Vočadlo fluid (finite slope at 0  ), 

b) Herschel-Bulkley fluid (nearly infinite slope at 0  ). 
 

The yield shear stress for the ERF varies with respect to the electric field. According to the experimental 
results reported in (Shulman et al. [2], Jordan and Show [3], Otsubo [5], Shulman and Nosov [8], Shen et al. 
[22], Sheng and Wen [25], Qiao and Zhao [29], Wunderlich and Brunn [30], Abu-Jdayil et al. [31]), the 
relation between the yield shear stress 0  and the electric field strength E is given as follows: 
 

   0
U

E
2h


    
 

 (1.3) 
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where E is the value of the vector E but U and 2h are the applied voltage and the film thickness, respectively. 
Both parameters   and   are the experimental constants of which the range of the exponent   is 1 to 2.4.  
Other experimental data (Whittle et al. [32]) suggest that the yield shear stress for some ERFs follows: 
 

   
2

0 1 2
U U

E
2h 2h

          
   

 (1.4) 

 
where 1  and 2  are constants; for relatively high field strengths a simpler formula may be used: 
 

   
2

0
U

E
2h

    
 

 (1.5) 

 

where   is an experimental constant. 
 This paper deals with a laminar flow ERFs modelled as a flow of the Vočadlo fluid – with a fractional 
index of non-linearity (Vočadlo and Charles [21]) – in the gap modelled as a narrow space between two 
surfaces of revolution shown in Fig.2. Using the method of averaged inertia (Walicka [33]) and the lubrication 
approximation theory (Falicki [23], Walicka [34]) the influence of inertia terms of the equations of motion and 
viscoplastic behaviour parameters on the pressure distribution is analysed.  
 
2. Equations of motion of an ERF 
 
 The three-dimensional form of the constitutive equation of the Vočadlo model follows (Walicka [33, 34]) 
 

  1Mp A1T  ,                1nn1
0 AAM                  

21
2
1tr

2

1
A 



 A  (2.1) 

 

where 1 is the unit tensor, p is the pressure, A is second invariant of the stretching tensor 1A  (the first Rivlin-
Ericksen tensor) defined by 
 

  ,T
1 LLA                    vgradL                    (2.2) 

 

and v is velocity vector, but T denotes the transposition. 
 The general equations of motion of the Vočadlo fluid have the following forms: 

– equation of continuity 
 
  0vdiv  (2.3) 
 

– equation of momentum 
 

 Tdiv
dt

dv
 (2.4) 

or 

  Λ
v

div p
dt

d
 (2.5) 

 
where 
 
  1MAΛ . (2.6) 
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 Let us consider the Vočadlo ERF flow in a clearance between fixed surfaces of revolution. The flow 
configuration is shown in Fig.2. The surfaces of revolution are defined by function  xR  which denotes the 

radius of the median between the surfaces, plus function  xh  which denotes the distance to each surfaces 
from the median, measured along a normal to the median. An intrinsic curvilinear orthogonal coordinate 
system yx ,,   is also depicted in Fig.2. 

 The physical parameters of the ERF flow are the velocity components yx  , , pressure p  and 

electric field E whose vector E is normal to the median. With regard to the axial symmetry of the flow these 
parameters are not dependent on the angle  . 
 The assumption typical for the flow in a narrow gap (Basavaraja et al. [12]; Dimarogonas and Kollias 
[4], Falicki [23], Walicka [33-35]) 
 

     xRxh    
 

can be used to make order-of-magnitude arguments for Eqs (2.3)  (2.6). 
 

 
 

Fig.2. The geometry of a curvilinear gap between two surfaces of revolution. 
 
 A further simplification comes by noting that – in accordance to the lubrication approximation – the 
most important changes in an annular channel occur in the normal (to the channel median) direction. This 
leads to the assumption that the flow is nearly parallel to the surfaces bounding the gap, so that 
 

  xy  ,          
yx 






  

 

in an intrinsic coordinate system. 
 If some asymptotic transformations are made, the same as in (Walicka [33, 34], Falicki [23]), these 
equations can be reduced to a simpler form 
 

  
 

0
yx

R

R

1 yx 








 (2.7) 
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and 






 


dy

d
S xsgn . The signum  sgn  function takes on the value 1  for a positive argument and 1  for a 

negative argument. 
 The order-of-magnitude arguments showed that  
 

   xpp   (2.10) 
 
is a function of x only. 
 For a majority of ERFs, greases, molten polymers and mush metals the values of a yield shear stress 

are contained in the limits:    3010 0  , where    100 ~  and denotes the order of magnitude, but the 

exponent n is an integer or fractional number (Vočadlo and Charles [21], Roussel [36], Falicki [23]). 
 In the flow of a fluid with the yield shear stress there exists a quasi-solid core flow bounded by 
surfaces lying at  
 
  0hy             for which the shear stresses are                 0yx ST  .                           (2.11) 

 
Combining expressions (2.9) and (2.11) one obtains the boundary conditions on liquid surfaces of the core 
flow as 
 

  0
x hy0

y





for . (2.12) 

 
The boundary conditions on solid surfaces are stated as follows 
 

  hy0yx  for . (2.13) 
 
On the median line there is also 
 

  0y0
y
x 




for            and hence            0y0Tyx  for .                   (2.14) 

 

Moreover, in the inlet and the outlet of the clearance conditions for the pressure can be written in the form: 
 
      ooii pxppxp  , . (2.15) 
 
where ix  denotes the inlet coordinate and ox   outlet coordinate. 

 
3. Solution to the equation of motion 
 
 Taking into account Eq.(2.7) one can rearrange Eq.(2.8) writing it in the form 
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Then, averaging the left-hand side of Eq.(2.16) across the gap thickness and taking into account the boundary 
conditions (2.13) , we obtain the following equation 
 

     

n1
xn

0
S f x

y y

              

 (2.17) 

 
where  f x  is defined as 

 

   
h

2
x

0

dp
f x R dy

dx Rh x

 
  

  . (2.18) 

 
Integrating Eq. (2.17) we get (Falicki [23], Walicka, [33-35]): 

–  for a shear flow 
 

  
   

n 1 1n 11
n nn 0n
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hnh y n 1 y
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n 1 h n h h

  
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where or
yx 0 0

T y h   ; 

 
–  for a core flow 
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n n n
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 (2.20) 

 

where or
yx 0 0

T y h   . 

 
The flow rate Q is defined as 
 

  
0

0

hh h

x xc xs
h 0 h

Q 2 R dy 4 R dy dy




 
          
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Using here expressions (2.19) and (2.20) we obtain 
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 (2.22) 

 
the equation with an unknown quantity f. 
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Introducing the following notations 
 

  

n

1

0
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Q
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
 ,            

0 0

hf h
X

h

 
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 (2.23) 

 
we will obtain the equation 
 

     

2n 1
2nn 1 1

X 2K 1 X 0
2n 1 2 2 2n 1



   
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 (2.24) 

 
which is characteristic to the flow of the Vočadlo fluid in the gap between two fixed surfaces of revolution.  
Its analytical solutions sX  exist only for large and mean values of K   10.  and for small values of K  

 050.  and they have the form (Falicki [23], Walicka, [33-35]) 
 

   
n

s

2n 1
X 1 2K

2n

    
,               2

1

s nK21X  . (2.25) 

 
To determine the pressure distribution let us turn to expression (2.18). Rearranging it we get: 
 

   
h

2
x

0

dp
f x R dy

dx Rh x

 
  
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Taking into account expressions (2.25) and integrating Eq.(2.26) we will find 
 
       o o o

p x p S x S D x D            ,          oooo xDDxSS  , . (2.7) 

 
The functions  xS  and  xD  are given by expressions 
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Note that the final forms of  xS  and  xD  depend – for   oU x U const   – on the values of K and n: 

 for large and mean values of K  and exponent n being a natural number we have 
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 for large and mean values of K  and exponent n being a rational number the final form of  xD  is 

similar and  xS  takes the form 
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– for small values of K we have 
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The prime denotes differentiation with respect to x. 
 

For  0 0x const     (the coefficient 0   but 0   ) we have (Falicki [23], Walicka and Falicki [37]): 
 
–  for large and mean values of K  and exponent n being a natural number 
 

       
   

n n
i ii

0 n n n
i 0

2n 1
S x C 2A J x

2n 

    
 

 , (2.30b) 

  
 

  
    

  

 
    

   ,













xI
6

1
xInA

xIA1n31n22
2n31n3

xD

0
1

1
1n

2
1

2
n2

n

2

0

 (2.31b) 
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 for large and mean values of K  and exponent n being a rational number the final form of  xD  is 

similar and  xS  takes the form (Falicki [23]) 
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– for small values of K there are 
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where coefficients  iA n  are given by relations (2.37). 
 

4. Examples of the flows and graphic presentation of some results 
  

 Taking into account the results obtained in the previous section we will present the pressure 
distribution in the gap of constant thickness between two parallel disks shown in Fig.3 and between two 
concentric spherical surfaces shown in Fig.4. To this aim we introduce the following dimensionless 
parameters: 

 

 

xR 
 

ii xR   
 

oo xR   
 

consth   

Fig.3. Geometry of a gap between two parallel disks. 
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Fig.4. Geometry of a gap between two concentric spherical surfaces. 
 

for a gap between two parallel disks 
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for a gap between two concentric spherical surfaces 
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For spherical surfaces: so RR   in all dimensionless parameters. 
 The nondimensional formula for  the pressure distribution in the ER flow of the Vočadlo fluid has the 
form 
 

      oo DxDSxSp
~~~~~~~  .                  (4.4) 

 

Note that if n 1  all the above formulae represent the Bingham ERF flow. 

R  is the modified Reynolds number and SVK  is the ER plasticity number (de Saint-Venant ER number). 

Note that large values of the plasticity number correspond to the flow with small core (small hh0 / ). 
The nondimensional pressure distributions of ERFs are presented in Figs 5-18 for the flows between parallel 
disks and for the flows between concentric spherical surfaces. 
 

 
 

Fig.5.  Dimensionless pressure distributions p~  for the Vočadlo ERF flow in a gap between parallel disks 

for different values of R , large value of 5KSV   and the value of exponent 1n   (the ERF of a 
Bingham type). 
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Fig.6.  Dimensionless pressure distributions p~  for the Bingham ERF flow in a gap between concentric 

spherical surfaces for different values of R , large value of 5KSV   and the value of exponent 

1n  . 
 

 
 

Fig.7.  Dimensionless pressure distributions p~  for the Vočadlo ERF flow in a gap between parallel disks 

for different values of R , large value of 5KSV   and the value of exponent 51n . . 
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Fig.8.  Dimensionless pressure distributions p~  for the Vočadlo ERF flow in a gap between concentric 

spherical surfaces for different values of R , large value of 5KSV   and the value of exponent 

51n . . 
 

 
 

Fig.9.  Dimensionless pressure distributions p~  for the Vočadlo ERF flow in a gap between parallel disks 

for different values of R , large value of 5KSV   and the value of exponent 2n  . 
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Fig.10.  Dimensionless pressure distributions p~  for the Vočadlo ERF flow in a gap between concentric 

spherical surfaces for different values of R , large value of 5KSV   and the value of exponent 

2n  . 
 

 
 

Fig.11.  Dimensionless pressure distributions p~  for the Vočadlo ERF flow in a gap between parallel disks 

for different values of 105KSV  , the value of exponent 2n   and constant value of 0R  . 
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Fig.12.  Dimensionless pressure distributions p~  for the Vočadlo ERF flow in a gap between concentric spherical 

surfaces for different values of 105KSV  , the value of exponent 2n   and constant value of 

0R  . 

 

 
 

Fig.13.  Dimensionless pressure distributions p~  for the Vočadlo ERF flow in a gap between parallel disks 

for different values of 010R . , small value of 050K SV .  and the value of exponent 1n   (the 

ERF of a Bingham type). 
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Fig.14.  Dimensionless pressure distributions p~  for the Bingham ERF flow in a gap between concentric 

spherical surfaces for different values of 010R . , small value of 050K SV .  and the value  of 

exponent 1n  . 
 

 
 

Fig.15.  Dimensionless pressure distributions p~  for the Vočadlo ERF flow in a gap between parallel disks 

for different values of exponent 211n . , small value of 050K SV .  and constant value 0R  . 
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Fig.16. Dimensionless pressure distributions p~  for the Vočadlo ERF flow in a gap between concentric spherical  

surfaces for different values of exponent .n 1 1 12  , small value of 050K SV .  and constant value 

0R  . 

 

 
 

Fig.17.  Dimensionless pressure distributions p~  for the Bingham ERF flow in a gap between parallel disks 

for different values of 050020K SV ..  , the value of exponent 1n   and constant value of 0R  .  
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Fig.18.  Dimensionless pressure distributions p~  for the Bingham ERF flow in a gap between concentric spherical 

surfaces for different values of 050030K SV ..  , the value of exponent 1n   and constant value of 

0R  . 
 

 All dimensionless values of SVK  and R  that were used to illustrate graphically the presented results 
are taken from the experimental viscometric data for the ERFs of the Vočadlo type in slit flows [30, 31] and 
also from the analysis of the experimental results for the Vočadlo lubricant flows in thrust slide bearings 
[23].  
 
5. Conclusions 
 
 In this paper, the relative inertia effect as a function of the Reynolds number was investigated in a 
clearance flow of an ERF of Vočadlo type between two surfaces of revolution. All these theoretical results were 
obtained by using the method of averaged inertia. 
 From the general considerations, formulae and graphs presented here for the Vočadlo ERF flow in a 
narrow gap of constant thickness between parallel disks and concentric spherical surfaces shown in Fig.3 and 
Fig.4 one may conclude that the pressure values: 
 decrease with the increase of the modified Reynolds number R , 

 increase with the increase of the non-linearity index n, 
 increase with the decrease of the de Saint-Venant ER number SVK , 

 are larger between concentric spherical surfaces than these ones between parallel disks for small values 
of SVK , 

 for large values of SVK  it is inversely. 

 For small values of the de Saint-Venant ER number SVK  the influence of the Reynolds number R  

on the pressure values is inconsiderable. Therefore, it may be considered that for these values of SVK  the 
Vočadlo ER fluid flows without inertia effects. The pressure values are larger for the flows between 
concentric spherical surfaces than these for flows between parallel disks. 
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 Generally, it may be concluded for the Vočadlo ER fluid flows in the gap between two surfaces of 
revolution that the pressure values: 
 are larger for the flow in the gaps with curvilinear generating lines than these for the flow in gaps with 

rectilinear generating lines.  
 Some general information about experimental data concerning the flows of ERFs of the Vočadlo 
type may be found in the studies carried out by Korobko [20] and Abu-Jdayil [38]. Korobko presented her 
experimental results in a graphic form and these results are generally similar to the present results without 
inertia. 
 
Nomenclature  
 
  nAi  – auxiliary function defined by formula (2.37)  

 nA  – auxiliary function defined by formula (2.32)1 or (2.38)1, respectively 

  xD  – auxiliary function defined by formulae (2.8)2, (2.31) and (2.36), respectively  
 h  – half of the fluid film thickness 

  
 j
n

I  – auxiliary function defined by formula (2.38)3  

  
 ;j
n

I
  – auxiliary function defined by formula (2.32)3  

  
   n

J x
  – auxiliary function defined by formula (2.38)2  

 
   ;
n

J x
   – auxiliary function defined by formula (2.32)2  

 K  – plasticity number 
 SVK  – de Saint-Venant ER plasticity number 

 n  – non-linearity index 
 p  – pressure 
 Q  – flow rate 
  xRR,  – local radius 

 iR  – inlet radius to the gap 

 oR  – outlet radius from the gap 

 R  – modified Reynolds number 

 S  – signum function 
  xS  – auxiliary function defined by formulae (2.8)1, (2.30), (2.33) and (2.35), respectively 
 yxT  – component of the shear stress tensor 

 U – applied voltage 
 yx  ,  – velocity components 

 ,   – ER experimental constants 

   – fluid density 
   – central angle of spherical surface 
   – shear stress 
 0  – yield shear stress 
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