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The forced vibration of a multi-layered plate-strip with initial stress under the action of an arbitrary inclined
time-harmonic force resting on a rigid foundation is considered. Within the framework of the piecewise
homogeneous body model with the use of the three-dimensional linearized theory of elastic waves in initially
stressed bodies (TLTEWISB), a mathematical modelling is presented in plane strain state. It is assumed that there
exists the complete contact interaction at the interface between the layers and the materials of the layer are
linearly elastic, homogeneous and isotropic. The governing system of the partial differential equations of motion
for the considered problem is solved approximately by employing the Finite Element Method (FEM). Further, the
influence of the initial stress parameter on the dynamic response of the plate-strip is presented.

Key words: multi-layered plate-strip, finite element method, initial stress, time-harmonic force.

2010 Mathematics Subject Classification: 74H15; 74S05.
1. Introduction

Due to the application of an external force such as mechanical or thermal loads, elastic solid
materials are deformed, and they go back to their original shape after the force has been applied.
Deformations in bodies are investigated in terms of the stresses and displacements components.
Corresponding problems are encountered in almost all areas of applied sciences and engineering such as
wave propagations, finite deformation theories or the diffraction theory. Hence, the subject “deformation of
solids” has been under intense interest by many researchers.

Problems regarding non-linear effects in the dynamics of the layered elastic systems depend
significantly on many factors. Two of the mentioned factors are the following ones: (a) the frequency
response of the body under consideration, (b) the static initial stresses in each layer in which they exist
before the application of the external dynamical force. The factor (a) is one of the most decisive features of
the dynamic behavior of the system. The initial stresses in the layers of the body mentioned in the factor (b)
may arise due to technological requirements or the environmental temperature. Note that the influence of the
initial stresses on the dynamical behavior of the multi-layered body cannot be investigated within the
framework of the classical linear theory of elastodynamics due to the fact that the initial stress displays non-
linear effects. However, the corresponding investigations can be made within the scope of the three-
dimensional linearized theory of elastic waves in initially stressed bodies (TLTEWISB). Note that these are
based on the two fundamental assumptions such as (i) the pre-stressed state (or initial stress-state) is exactly
homogeneous and static; and (ii) the additional dynamic loading subjected to the pre-stressed body is
significantly smaller than the magnitude of the initial loading. The monographs [1, 2] give detailed
information on the subject. Some examples of studies made on the influence of initial stresses on the multi-
layered system are given in [3-10].
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In this paper, a mathematical modelling is presented to investigate the influence of the initial stress
on the frequency response of a multi-layered plate-strip under the action of an arbitrary inclined time-
harmonic external force resting on a rigid foundation. Note that the investigation is carried out within the
framework of the piecewise homogeneous body model by the use of the TLTEWISB. Furthermore, the
problem under consideration is approximately solved by employing the FEM, and certain numerical results
are given. In particular, the influence of the initial stress on the dynamic response of the plate-strip is
investigated.

2. Problem formulation

Consider a multi-layered pre-stressed plate-strip with the length 2a and the height /# resting on a
rigid foundation. The body has linear elastic, homogenous and isotropic layers. The height of each layer is

denoted by L") , where r=1,2,...,m. As can be seen from Fig.1, an arbitrary inclined time-harmonic linear
load is applied to the midpoint of the free surface of the plate-strip. It is assumed that the Cartesian
coordinates denoted by X; in the natural state coincide with the Lagrange coordinates. It should be noted that

before compounding each layer with one another and with the rigid foundation, each layer is separately
subjected to a uniaxial uniformly distributed normal external force. This may be a stretching force or a
compressing force. Consequently, an initial stress arises in each layer. These initial stresses are determined
by utilizing the linear theory of elasticity as follows

G(Ir]),o >0 and c;; " =0 for ij=11 2.1
where i; j=1,2 and cgr])’o denotes the unique non-zero initial stress of the » — th layer. The values relating
to the corresponding layer of the plate-strip are denoted by the superscript “(r) ”. Furthermore, the values

relating to the initial state are denoted by the additional upper index “0”. According to Fig.1, the considered

m
plate-strip includes the domain D = U D), where

r=1

D) = {(xj,xz ):—a<x;<a, W) < x; < A=) (2.2)
In Eq.(2.2), the notation A7) = —Z A" s used.
I=1
According to Guz [1-2], the equations of motion of the TLTEWISB are
o) +o0ulr) = o) ij=12. 2.3)
In Eq.(2.3), p(r) is the mass density of the » —th material in the natural state, u[(r) are the

components of the displacements tensor, and csgjr) are the components of the stress tensor. The dot over the

quantities is time differentiation and the subscripts followed by a comma indicate the space-coordinate
differentiation. Here and below, the repeated index in the subscript is summed with respect to that index.

For an isotropic compressible material, the mechanical and geometrical relations under consideration
can be given as



Effect of initial stress on the dynamic response of a multi-layered ... 523

ol =alels, +2uel) gl = (u(r.) +ul!) ) /2 2.4)

r

where K(r) and p.(r) are the Lamé constants, S is the Kronecker delta, and 81(', ) are the components of the

strain tensor.
According to the foregoing assumptions, there exist the following boundary-contact conditions

6(2]1) = —pyd(x; )€ cosar, 6(2]2) )= —pyd(x;)e sina, (2.5)
X)= Xp=
(r+1) o (r) - (r+1) o (r) -

Oi2 x2:h( ) Oiz x2=h(r) ’ U; x2=h(r) U; x2=h(r) ’ (26)
R R

x;=ta Xy=—h

where 6() is the Dirac delta function.
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Fig.1a. Elastic multi-layered structure.



524 A.Dasdemir

A
[. layer
h,
II. layer
1 h2
L
(m-1). layer |
hmfl
m. layer
hm \'%

Fig.1b. Scheme of heights of layers.

3. Solution procedure

Since the external linear load is time-harmonic, with frequency ®, as p08(x1 )ei ®* all the dependent

variables of the problem can be written in the form

{uﬁ’) o) 8(r>}(x1,xz,t)={a§f> a) é(r)}(xl,xz)ei“)t. 3.1)

’ l] s U s 1] ] l]
In addition, introduce the dimensionless coordinate system
X =— and )%2 =—. (32)

Hence, applying the expression in Eq.(3.1) after the coordinate transformation in Eq.(3.2) into the
foregoing equations and boundary-contact conditions, the same equations are obtained directly for the

amplitude of the sought values by replacing the terms a2u§.’) /or and p08(x1)ei°’t with —’ uﬂr) and

p06(x1) , respectively. Clearly, they are as follows

) ={()e,,fcz):—a/h <t <alh, W h<s < h(”)/h}, (3.3)
&)+l + o h?a) =0, (3.4)
sV =—p,3(h%))cosar, &Y ==p,d(hsin (3.5)
Xr= Xr=
~(r+l) o ~(.r) - ~(r+l) o ~(r) - 36
S PO 012 iy=h"in’ " ley=dm K iy=h")in” 3.6)
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(G(&)’O ")+ 55;_))

J

—0, a9 =o. 3.7)

%j=talh Xy=-1

For simplicity, all the superimposed notations will be omitted after this unless specified otherwise.

Since the geometry of the problem is a quite complex, an analytical solution to the problem cannot
be obtained. Hence, the problem is approximately solved by employing the FEM. According to the well-
known procedure, multiplying equations of motion in (3.4) with by — multiply by the test functions
V=V (x,,xz) and v, =v2(x1,x2), summing them side-by-side, integrating the last equation over the

domain D and after certain mathematical manipulations,

~—
N
+
<
oo
~—

AR Ve
W +T'| ”1,1 +Wu2,2 V],I +|:u,

2
D 2 o () o AT (7)) o () (r 3.8
+ B ug ]) +[Cfr) ug; vgg —(Q( )) [ug )vg )+ug )vg )} (3.8)

u 9)
a S .
=_J;_Po :Zg)(vgl) cosoc+vg]) smoc)xz:o dx;
is obtained. In Eq.(3.8), the following notations are used
r r r r r r r r h r r), r
) 2 i 2000 ) 0 gl O and ) o) /) (3.9)
€

(r) (r)

where ¢; 7 is the speed of dilatation waves, ¢; ’ is the speed of distortion wave, Q") is the dimensionless
frequency, and n(r) is the initial stress parameter, respectively.

Denoting the terms in the left and right side of Eq.(3.8), respectively, by B(u(r),v(')) and l(v(r)),

the total energy functional J(u(')) = B(u('),u(r) )/2 - l(u(r)) is obtained as follows

2 2 2 2
AN ETA I E IR0

; cg’) ox; 0ox, M(’) ox; 0Ox, ox,  Oxg
J () =2 [f ; dA +

2% aulr) ? aul) ? 2 2 2

(r)] | S “2 (o) (r) (r) (3.10)
o 2 2 o -t
a S .

+J. Po :()Z)(ugl) cosa+u(21) smoc)xz:o dx;.
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As known from the principle of calculus of variation, equating the first variational of the total energy

functional J (u(')) given in Eq.(3.10) to zero, the equations of motion and the corresponding boundary-

contact conditions under consideration are obtained. In this way, the validity of the functional (3.10) is
proven.

According to the virtual work principle and the standard Rayleigh-Ritz method, the domain D is
divided into a number of sub-domains. It should be noted that the number of these sub-domains is
determined following the requirements such that the boundary conditions must be satisfied with very high
accuracy and numerical results obtained must converge sufficiently well. Now the displacement components
are represented at the nodes as

M M
ugk) = Zai(k)Ni (t,s)  and ugk) = Zb,-(k)N,- (2,5) (3.11)
i=1 i=1

where M is the number of the nodes over the k — th element, @, and b, are the unknown coefficients that

need to be determined, N, (t,s) represents the shape functions over the k£ —th element, and ¢ and s are its
local normalized coordinate components in the local coordinate system associated with the corresponding
element. It should be pointed out that the shape functions N, (z,s) e L}, where I} represents a set of the

functions such as the squares of them and their first order partial differentials are integrable in the sense of
Lebesque. Each of the shape functions N j(t,s) , on the other hand, is defined over the domain

[-1,1]x[~1,1], and the list of them can be found in [11].

Substituting the approximate solutions Eq.(3.11) into the total energy functional (3.10), the system of
algebraic equations

(K—coZM)ﬁ:F, (3.12)

is obtained, where K is the stiffness matrix, M is the mass matrix, & is the column vector of unknown
displacements at the nodes, and F is the force vector. To reduce the volume of the present paper the explicit
forms of the matrices and vectors in Eq.(3.12) are not given here. Note that their explicit forms are directly
derived from Eq.(3.10) by employing the corresponding procedure.

4. Numerical findings and discussions

The domain covered by the considered body is divided into 200 parts of equal length in the direction
of the Ox; - axis and 25 parts of equal length in the direction of the Ox,- axis. In this case, 40902 NDOFs

have been obtained in total. Introduce the notations e, = e / ) , where ¢*) denotes Young’s modulus of
the corresponding layer.

To prove the trustworthiness of the algorithm and programs developed for the current mathematical
modelling, the case where m=2, hy=h,=h/2, e.=1, v =y 2033, n(l) = n(z) =0, Q=0 and
a=n/2 is taken into account. It should be noted that the problem associated with the plate with infinite
length in this case was solved by employing the Fourier integral transformation method in [12]. According to

the foregoing mechanical considerations, the numerical results obtained by the use of the FEM presented in
this paper must converge to the corresponding ones given by Uflyand in [12], as #/2a — 0. This prediction

is clearly demonstrated by the graphs given in Fig.2, which display the variation of the stress Gzzh/ pp with
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respect to x; /1 on the surface between the plate-strip and rigid foundation. The starred graph in Fig.2
indicates the one given by Uflyand [12]. So, the desired validity and trustiness of the algorithm and programs

used are proved.
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Fig.2. The distribution of &,,/h/ p, with respect to the line x; /& for various thickness ratio.
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Fig.3a. The dependence between G,,h/ p, and n for various thickness ratio under Case I and a.=m/6.
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Fig.3b. The dependence between G,/ p, and n for various thickness ratio under Case I and o.=m/4.
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Fig.3c. The dependence between G,,h/ p, and n for various thickness ratio under Case I and a=m/3.
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Fig.3d. The dependence between G,,// p, and n for various thickness ratio under Case I and ao=m/2.

To investigate the concrete examples, aluminum (shortly Al) with properties V(Al) =0.35 and

p(Al) =2.7x10° kg / m’® and steel (shortly St) with properties V(St) =0.29 and p(Al) =7.86x10° kg / m’ are
selected. The considered problem addresses a very wide area. However, to present the numerical results, the
following cases are only considered: Case I: Al+St+Al and Case II: St+Al+St. Other desired cases can be
investigated by employing the algorithm. Throughout the paper, all the investigations are made under the
assumptions h/2a=0.2, hy=h,=h;, n(l) =n(2) =n(3) =n, Q=0, n=0 and a=n/2 at the point
(—1,0) , unless otherwise specified.

The dependences between G,,// p, and M are given in Fig.3 for Case I and in Fig.4 for Case II.
Moreover, while these graphs are constructed, the cases where a.=n/6 (Figs 3a and 4a), oo =n/4 (Figs 3b
and 4b), a=n/3 (Figs 3c and 4c) and a=n/2 (Figs 3d and 4d) are taken into account. The absolute
values of the normal stress G,/ p, decrease (increase) with the initial stretching (compressing) parameter

and with the angle o. But, its absolute values increase with decreasing 4/ 2a . The distributions of the
graphs given for Case II are more stable than the ones for Case 1. Moreover, for Case I, the initial

compressing applied to the layers causes the oscillating character of the distribution of G,,h/ p, to become
more sensitive. However, the initial stretching increases the stability of the system. As can be seen from a
comparison of the graphs in Figs 3 and 4, the stress G6,,// p, depends linearly on the initial stress parameter

for Case 11, but it does not depend linearly for Case I. This result is explained by the selection of the plates.
The numerical results indicate that there exist certain locations where the parametric resonance of the normal
stress G,/ / py occurs for certain values of the initial stress parameter 1. The case where 4/2a =0.3 and

n=0.0] in Fig.4b can be given as an example. The numbers of the local maximums and minimums of
G,,h/ py decrease with //2a and with o. An increase in the values of &/ 2a causes to decrease (increase)
the influence of the initial stretching (compressing) on the distribution of G54/ p,.
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Fig.4a. The dependence between G,,h/ p, and 1 for various thickness ratio under Case Il and a.=m/6.
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Fig.4b. The dependence between G5,k / p, and 1 for various thickness ratio under Case [l and ao=7/4.
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Fig.4c. The dependence between G,,h/ p, and 1 for various thickness ratio under Case Il and a.=m/3.
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Fig.4d. The dependence between G,,/1/ p, and M for various thickness ratio under Case Il and oo=m/2.

Figures 5 and 6 display the influence of the initial stress parameter 1 on the frequency response of

the normal stress G,,// p, for Case I and Case II, respectively. Note that these figures are plotted for the
cases where a=n/6 (Figs 5a and 6a), a =n/4 (Figs 5b and 6b), and a =n/3 (Figs 5c and 6¢) and
a=n/2 (Figs 5d and 6d). The absolute values of G,,// p, decrease with €2. It follows from the graphs

that there exist locations where G,,h/ p, reaches the extrema for certain values of (). These values are
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called the resonance values and denoted by Q" . As can be seen from the graphs, the resonance values of
Gl / py decrease with (increasing) the initial stretching (compressing) parameter. The numbers of the local
maximums and minimums of the G,,// p, increase with (increasing) the initial stretching (compressing)
parameter. It is concluded from the graphs that the influence of the initial stress parameter m on the
frequency response of the stress G,,1/ p, is considerable not only in the quantitative sense, but also in the

qualitative sense. As in Figs 3 and 4, the system becomes quite stable for the second case. The numerical
results indicate that the layer adhered to the rigid foundation should be selected as stiffer than the others.

Fig.5a. The dependence between G,,A/ p, and Q for various values of n under Case I and a=7/6.
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Fig.5b. The dependence between G,,// p, and Q for various values of n under Case [ and aa=m/4.
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Fig.5c. The dependence between G,,A/ p, and Q for various values of n under Case Iand a=m/3.
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Fig.5d. The dependence between G,,4/ p, and Q for various values of n under Case [ and oo=m/2.
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Fig.6b. The dependence between 5,4/ p, and Q for various values of n under Case [l and a=m/4.
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Fig.6d. The dependence between G,,// p, and Q for various values of n under Case Il and a.=m/2.

Nomenclature

a - the length of the plate-strip

1

a*) (bl-(k )) — anodal displacement of the i th node of the & th element in the direction of Ox; (Ox;)
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B(u(’),v(’)) — the bilinear part of the total energy functional
)

7~ —speed of the dilatation wave in  th layer material

(r)

¢y’ - speed of the distortion wave in  th layer material
D — domain of body
p") — domain of r th layer material
e, — Young’s modulus of r th layer material

) — the ratio of Young’s modulus of  th layer material (: Y / e(’))

F — force vector
FEM - finite element method
h — height of body

J (u(r)) — the total energy functional

K - stiffness matrix
L}, —set of the functions such as the squares of them and their first order partial differentials are integrable in
the sense of Lebesque

) (v(r)) — the linear part of the total energy functional
M — the number of the nodes over a finite element
M — mass matrix
N, (t,s) - the shape functions
py — value of the point-located force

r —number of layers
TLTEWISB - the three-dimensional linearized theory of elastic waves in initially stressed bodies
u — vector of unknown displacements

u; (uy) — the components of the displacement vector in the direction of Ox; (Ox;)

o — the angle of time-harmonic force
8;; — Kronecker symbols

8(+) — Dirac delta function
g;; — components of the strain tensor

n(") — the initial stress parameter in the layer
A, u  — Lamé constants

o density of the material of 7 th layer

o; — components of the stress tensor
cgr])’() — initial stress acting in the layers
® — frequency of the external force
o) — dimensionless frequency
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