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The unsteady flow of a viscous incompressible fluid due to non-coaxial rotations of a porous disk and a fluid 
at infinity subjected to a periodic suction through a porous medium has been studied. The velocity field, shear 
stresses are obtained in closed form. The variations of primary and secondary velocities for different values of 
non dimensional parameters are depicted in figures. 

 
Key words: periodic suction, non-coaxial, eccentric, oscillating, rotating.  

 
1. Introduction 
 
 The flow of a viscous incompressible fluid due to non-coaxial rotations of a disk and a fluid at 
infinity has been studied by a number of researchers. An exact solution of this type of problem was obtained 
by Berker [1]. Coirier [2] studied the flow due to a disk and a fluid at infinity which are rotating non-
coaxially at a slightly different angular velocity. The non-Newtonian flow due to a disk and a fluid at infinity 
which are rotating non-coaxially at a slightly different angular velocity was studied by Erdogan [3]. An exact 
solution of the three dimensional Navier-Stokes equations for the flow due to non-coaxial rotations of a 
porous disk and a fluid at infinity was studied by Erdogan [4, 5]. The unsteady flow due to non-coaxial 
rotations of a disk, oscillating in its own plane and a fluid at infinity was studied by Kasiviswanathan and 
Rao [6]. The flow due to non-coaxial rotations of an oscillatory porous disk and a fluid at infinity about an 
axis passing through a fixed point parallel to the axis of rotation of the disk was investigated by Hayet et al. 
[7]. The flow due to non-coaxial rotations of an oscillating porous disk and a fluid at infinity which rotate 
about an axis passing through a fixed point parallel to the axis of rotation of the disk was studied by Guria et 
al. [8]. Guria et al. [9] investigated the Hall effects on an unsteady flow of a viscous fluid due to non-coaxial 
rotations of a porous disk and a fluid at infinity. Ghosh et al. [10] studied the flow due to non coaxial 
rotations of a porous disk subjected to a periodic suction and a fluid at infinity. Guria et al. [11] studied the 
flow due to non-coaxial rotations of a porous disk and a fluid at infinity through a porous medium. Hayat et 
al. [12] also studied the unsteady MHD flow due to non-coaxial rotations of a porous disk and a fluid at 
infinity. The effects of Hall currents on the unsteady MHD flow due to non-coaxial rotations of a porous disk 
and a fluid at infinity were studied by Hayat et al. [13]. Ghara et al. [14] also investigated the Hall effects on 
the viscous incompressible fluid due to non-coaxial rotations of an oscillating porous disk and a fluid at 
infinity. 
  In the present paper, the effect of permeability on an unsteady flow due to non-coaxial rotations of a 
porous disk subjected to a periodic suction or blowing and a fluid at infinity is studied. 
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2. Formulation of the problem and its solution 
 
 Consider an unsteady flow of a viscous incompressible fluid embedded in a porous medium 
occupying the space z > 0  and is bounded by an infinite porous disk at z = 0 . The axes of rotation of both 
the disk and that of the fluid at infinity are in the plane x = 0 . The distance between the axes of rotation is l . 
Initially, at t = 0 , the disk and the fluid at infinity rotate about the z  axis with the same uniform angular 
velocity  . At time t > 0 , the disk suddenly starts to rotate about the z  axis with uniform angular velocity 
while the fluid at infinity continues to rotate about the z  axis with the same angular velocity as that of the 
disk. 
 

 
 

Fig.1. Geometry of the problem. 
 
 The boundary conditions of the problem are  
 
      atu = y l , v = x, w= V t t = 0, z >0,     

  
    atu = y, v = x, w= V t z = 0, t > 0,    (2.1) 

  
    as for allu = y l , v = x z t.      

 
  The Navier Stokes eqations are, respectively  
 

  
2 2 2

2 2 2

u u u u 1 p u u u
u v w = u

t x y z x kx y z

         
                   

, (2.2) 

  

  
2 2 2

2 2 2

v v v v 1 p v v v
u v w = v

t x y z y kx y z

         
                   

, (2.3) 

  

  
2 2 2

2 2 2

w w w w 1 p w w w
u v w = w

t x y z z kx y z

         
                   

 (2.4) 
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where  wvu ,,  are the velocity components along the coordinate axes,   is the fluid density,   is the 
kinematic coefficient of viscosity. The perodic suction velocity distibution of the form  
 

    i t
0V t = w 1 Ae       (2.5) 

 
where 0w  is a positive constant, > 0  is very small and A is a real positive constant such that A 1  . 
 We assume the velocity components of the form  
 
       , ,u = y f z,t v = x g z,t w= V t .      (2.6) 

 
 Using Eq.(2.6), the equations of motion become  
 

   
2

2
2

f f 1 p f
V t g = x y f

t z x k kz

     
       

     
, (2.7) 

   

   
2

2
2

g g 1 p f
V t f = y x f

t z y k kz

     
       

     
, (2.8) 

  

  
   V t 1 p

= V t .
t z k

  


   
 (2.9) 

 
  Differentiating Eqs (2.7) and (2.8), we get  
 

   
2 2 3

2 3

f f g f f
V t =

z t z k zz z

     
   

     
, (2.10) 

  

   
2 2 3

2 3

g g f g g
V t =

z t z k zz z

     
   

     
 (2.11) 

 
  Combining Eqs (2.10) and (2.11), we get  
 

   
3 2 2

3 2

F F F F
V t i = 0

z t k zz z

     
           

 (2.12) 

 
where  
 

  ,F = f ig i = 1.   (2.13) 
  
 The corresponding boundary conditions become  
 
  ,F = l z 0  , (2.14) 
 
    , forF 0,t = 0 t >0  
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    , forF ,t = l t > 0.   (2.15) 

  
 We assume  
 

       , , , .i t
0 1F z t = F z t F z t e    (2.16) 

 
 Substituitng Eq.(2.16) in Eq.(2.12) and comparing the harmonics terms and neglecting the 

coefficients of 2 , we get 
 

  
3 2

0 0 0
03 2

d F d F dF
w i = 0

k dzdz dz

 
     

, (2.17) 

 

  .
23 2

01 1 1
0 03 2 2

d Fd F d F dF
w i i = w A

k dzdz z dz

 
        

 (2.18) 

 
  Introducing the non-dimensional variables  
 

  , , ,0w k
= z S = n= 1 K =

2 2

  
 

  
, (2.19) 

 
Eqs (2.17) and (2.18) become  
 

  
3 2

0 0 0
3 2

d F d F dF1
2 2S 2 i = 0

K dd d

        
, (2.20) 

 

  .
23 2

2 01 1 1
3 2 2

d Fd F d F dF1
2 2S 2 i = 2 2SA

K ddz d d

         
 (2.21) 

 
  The boundary conditions (2.14) and (2.15) become  
 

         , , ,0 0 1 1F 0 = 0 F = l F 0 =0 F = 0.    (2.22) 

 
  Solving the Eqs (2.20) and (2.21) subject to the boundary conditions (2.22) and using Eq.(2.16), we 
get  
 

  
        

    

cos sin sin

cos cos ,

0 01
0 0 1 02

0 1
0 0 1

f 2SA
= 1 e e t e t

l n 1

e t e t

    

   

              

        

 (2.23) 
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      

    

sin cos cos

sin sin

0 01
0 0 1 02

0 1
0 0 1

g 2SA
= e e t e t

l n 1

e t e t

    

   

            

        

 (2.24) 

  
where  
  

  ,0 0 1 1= 2S = 2S      , 
 

  

1/ 2
2

2 2
0

1 1
= S S 1

K K

             
     

,
 

 

  
,

1/ 2
2

2 2
0

1 1
= S S 1

K K

              
       (2.25) 

 

  ,

1/ 2
2

2 2 4
1

1 1
= S S n

K K

             
       

 

  

1/ 2
2

2 2 4
1

1 1
= S S n .

K K

              
     

 

  
 The flow very near the porous disk is  
 

        

    

cos sin

cos sin ,

0 0 1 0 1 02

0 1 0 1 0

f 2SA
= t t

l n 1

t t

               

           

 (2.26) 

 

        

    

sin cos

sin cos

0 0 1 0 1 02

0 1 0 1 0

g 2SA
= t t

l n 1

t t .

               

           

 (2.27) 

  

 The inclination of the fluid velocity vector with the y  axis near z = 0  becomes  tan 1= C / D , 

where  
 

     
    

    
sin cos

cos sin ,

2
0 0 1 0 1 0

0 1 0 1 0

C = ( n 1) 2SA t t

t t

            
       
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     

    
cos sin

cos sin

2
0 0 1 0 1 0

0 1 0 1 0

D= n 1 2SA t t

t t .

            

        
 

  

Case I: When ,S 0 A= 0 ,  tan 1 o
0 0= < 45   . 

 
Case II: If , ,t = / 2 S 0 A 0    , the inclination of the fluid velocity to the y  axis near the z  axis will be  
 

  
      
      

tan .

2
0 0 1 0 0 1 01

2
0 0 1 0 0 1 0

n 1 2SA
=

n 1 2SA


            
 
            

 (2.28) 

  
3. Results and discussion  
 
 We have presented the non-dimensional primary velocity lf /  and the secondary velocity lg /  

against   for several values of the permeability parameter K , the suction or blowing parameter S , the 

magnitude of fluctuation of suction velocity A , and t . Figure 2 represents the variations of lf /  and the 

secondary velocity lg /  for several values of the permeability parameter K . It is observed that the primary 
velocity decreases but the secondary velocity increases with an increase in the permeability parameter. 
Figure 3 shows the variations of the primary velocity for several values of S . It is seen that suction creates 
thickening of the boundary layer. The crossing of the graphs shown in the figure is due to the presence of 
suction because suction evokes thickening of the boundary layer near the disk and thinning of the boundary 
layer away from the disk. From Fig.4 it is observed that both primary and secondary velocities increase with 
an increase in A . In Fig.5 the the variations of primary and secondary velocities for different values of t  
are plotted. It is observed that primary velocity decreases with an increase in t  and a reverse effect is 
observed for secondary velocity. Using Eqs (2.26) and (2.27), we get the non-dimensional shear stress 
components x  and y  at the disk when = 0  as  

 

       cos sin ,x 0=0 2

f 2SA
= = P t Q t

l n 1
           

 (3.1) 

   

       cos siny 0 2=0

g 2SA
= = Q t P t

l n 1

           
 (3.2) 

 
where  
 

         and0 0 1 0 0 1 0 0 0 0 1P= Q= .            

  
 The non-dimensional shear stresses x  and y  due to the primary and secondary flows at the disk 

when = 0  are entered in Tab.1 for different values of S  and K  with , , ,o 2t = 45 A= 2 n = 1.5 = 0.1  .  
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Fig.2. Variation of /f l  and /g l  for , , , ,o 2S = 1 A= 2 t = 45 = 0.1 n = 1.5  . 
 

 
 

Fig.3. Variation of /f l  and /g l  for , , , ,o 2K = 0.5 A= 2 t = 45 = 0.1 n = 1.5  . 
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Fig.4. Variation of /f l  and /g l  for , , , ,o 2S = 1 K = 0.5 t = 45 = 0.1 n = 1.5  . 
 

 
 

Fig.5. Variation of /f l  and /g l  for , , , , 2S = 1 A= 2 K = 0.5 = 0.1 n = 1.5 . 
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Table 1. Shear stresses due to the primary and secondary flows for , oA= 2 t = 45 .  
 

  x    y  

 KS \    1/100    1/10    1  5 1/100 1/10  1   5   

 -1.0   12.61   3.12   0.51   0.12   -0.10   0.09   0.47   0.62  

-0.5   13.35   3.73   0.87   0.42   -0.02   0.14  0.58   0.80 

0   14.14   4.47   1.55   1.10   0.07   0.22  0.64   0.90  

0.5   14.97   5.36   2.60   2.18   0.17   0.32   0.64   0.82  

1.0   15.84   6.39   3.92   3.59   0.28   0.44   0.67   0.74 

 
Table 2. Shear stresses due to the primary and secondary flows for ,K = 0.5 A = 2.  

 
   x    y   

 tS \    o30    o45    o60    o30    o45    o60   
 -1.0   0.92   0.93   0.94   0.39   0.36   0.32  

-0.5   1.35   1.36   1.37   0.45   0.42  0.40 

0   2.05   2.05   2.05   0.48   0.48  0.48  

0.5   3.07   3.05   3.03   0.48   0.53   0.58  

1.0   4.33   4.29   4.22   0.50   0.61   0.71  

 

Table 3. Shear stresses due to the primary and secondary flows for ,ot = 45 S = 1.0 . 
 

   x    y  

 KA \    1/100    1/10    1  5 1/100 1/10  1   5   

 2.0   15.84   6.39   3.92  3.59   0.28   0.44   0.67   0.74  

3.0   15.96   6.53   4.14   3.85   0.39   0.56  0.76   0.81 

4.0   16.07   6.67   4.37   4.11   0.50   0.68  0.86   0.88  

5.0   16.18   6.81   4.59   4.37   0.61   0.80   0.95   0.95 

 
 It is observed that the shear stresses x  and y  increase with an increase the suction parameter.  

 
Conclusion 
 
 An unsteady flow of a viscous incompressible fluid due to non-coaxial rotations of a porous disk and 
a fluid at infinity subjected to a periodic suction through porous medium has been considered. It is observed 
that the primary velocity decreases but the secondary velocity increases with an increase in the permeability 
parameter. It is seen that suction creates thinning of the boundary layer. It is observed that primary velocity 
decreases with an increase in t  and a reverse effect is observed for secondary velocity. 
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Nomenclature 
 
 A  amplitude of the suction velocity 
 C, D  constants 

/ , /f l g l    dimensionless velocity components in x, z -axes respectively 

 K  permeability parameter 
 k  permeability of the medium 
 l  distance between the axes of rotation 
 n  rotational parameter 
 p  pressure 
 S  constant suction velocity 
 u, v, w  velocity components in x, y, z -axes respectively 
 V  suction velocity 
 w0  constant 
 x, y, z  Cartesian coordinates system 
 ,0 1    constants 

 ,0 1    constants 

    constant 
 η  dimensionless z coordinate system 
 ,0 1    constants 

    angle 
 ν  kinematic viscosity 
 ρ  density of the fluid 
 ,x z    shear stress due to primary and secondary flows 

    angular velocity 
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