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In the present paper, we have studied the temperature and pressure dependent creep stress analysis of 

spherical shell. The review is critical to enhance the warm resistance of spherical shells in high-temperature 
conditions. The effect of different parameters was studied and it was noticed that the parameter n has a significant 
influence on the creep stresses and strain rates. Creep stresses and strain rates are ascertained on the premise of 
summed up strain measures and Seth's transition hypothesis. This investigation is completed to demonstrate the 
impacts of temperature on the creep stresses and strain rates in the spherical shell. The resulting quantities are 
computed numerically and depicted graphically. It has been watched that the spherical shell made of an 
incompressible material is on more secure side of configuration when contrasted with the shell made of a 
compressible material. 
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1. Introduction 
 
 The advancement in technology leads to development of high -temperature machinery and 
equipments. In order to design spherical structures under the thermo-mechanical load, the study of design 
aspects of structures is essential. Jayaraman et al. [1] worked on the thermal stress problem of a spherical 
shell under pressure by using a continuum approach. The stresses were calculated for the linear variation of 
temperature across the radius of the shell, and results were shown in a graphical form. Miller [2] presented a 
solution for stresses and displacements in a thick spherical shell subjected to internal and external pressure 
loads. In addition to elastic behavior, the shell material is assumed to undergo both creep and dimensional 
changes as the shell is pressurized. The creep behavior is initially represented with a 4-parameter linear 
visco-elastic model to include transient and steady-state components, then is extended to more general linear 
visco-elastic models. Martins [3] constructed an adequate mathematical model for explaining the conduction 
heat transfer phenomenon in the spherical shell surrounded by a homogeneous medium. He represented the 
heat transfer phenomenon by non-linear differential equations with two independent variables. Hansen et al. 
[4] presented the new finite volume method for solving three-dimensional thermal convection in a spherical 
shell under strong temperature and pressure-dependent viscosity in which the spherical shell is divided into 
six cubes. The model is validated by taking parameters of steady-state cubic and tetrahedral convection with 
other published spherical models and a detailed convergence test on successively refined grids. Song et al. 
[5] investigated the non-linear free vibration of a metallic rotating shallow shell under steady state 
temperature based on the bending theory of thin shallow shells. The partial differential equations were 
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obtained to solve the two-point boundary value problem and then solved numerically by the shooting 
method. Kashkoli et al. [6] assumed that the thermo-creep response of the material is governed by Norton’s 
law and an analytical solution of the problem is presented for the determination of time-dependent creep 
stresses and displacements of homogeneous thick-walled pressure vessels. Usmani et al. [7] presented the 
theoretical approach for the determination of a temperature-dependent non-linear response of shells 
subjected to a transverse mechanical load. The non-linear behavior of the material arises by taking into 
consideration the elastic-plastic behavior at high temperatures under quasi-static conditions. All the authors 
mentioned above have determined the solutions of  the problems by considering the assumptions of creep –
strain laws like Norton’s and the incompressibility condition, etc. These conditions are based on the classical 
assumptions of creep transition. These conditions are no longer valid at transition state of the solid and this 
state is non-linear in nature. The non-linearity in these problems can be solved by using the concept of the 
generalized strain measures and Seth’s transition theory. Seth’s transition theory can be applied to various 
problems of thermal creep transition. Neither the yield criterion nor the associated flow rule is assumed here. 
Gupta et al. [8] investigated steady state creep behavior of a functionally graded rotating disc under varying 
thermal gradient. The creep behavior of the FGM composite disc is described by the threshold stress-based 
law. Thakur et al. [9] presented a study of thermal creep stresses and strain rates in a circular disc with shaft 
having variable density by using Seth’s transition theory. In this paper, we shall derive the results for thermal 
stresses under pressure in a spherical shell without resorting to any ad-hoc, semi-empirical laws and on the 
basis of  the concept of generalized strain measures and Seth’s transition theory of creep.  
 
2. Formulation of the mathematical problem 
 
 Consider a thick-walled spherical shell, whose inward and outer radii are a and b respectively, 
subjected to uniform inside pressure p and a temperature  connected at the interior surface of the shell. It is 
convenient to use spherical polar coordinates  , ,r   , where   the angle is made by the radius vector with 

a fixed axis, and   is the angle measured round this axis. The components of displacement in the spherical 

co-ordinates  , ,r    are given by 

 
  ( ), ,u r 1 v 0 w 0              (2.1) 
 

where u, v, w (displacement components);   is the position function, depending on r = 2 2 2x y z  only.   

 Generalized components of strain are given by Seth [10-11] 
 

   nrr
1

e 1 r
n
    
  ,       n1

e 1 e
n      , 

 
  r re e e 0      (2.2) 

 
where    /d dr   .  
 
Stress-Strain Relation: The constitutive equation for stress –strain relations for a thermo elastic isotropic 
material is given as [12] 
 

  ijT  = i j 1 ij ijI 2 e    ,         (i, j = 1, 2, 3)                 (2.3) 
 

where ijT  are the stress components,   and   are Lame’s constants, 1 kkI e  is the first strain invariant, 

ij  is the Kronecker delta,  3 2      ,   is the coefficient of thermal expansion, and   is the 
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temperature. The temperature of any part of a spherical shell under elastic-plastic stress is obtained, by virtue 
of the first and second law of thermodynamics. Further,   has to satisfy 
 

  2 0  . (2.4) 
 
 By using Eq.(2.2) in Eq.(2.3), the stresses are obtained as 
 

     n nn
rr

2
T 3 2 r 1 r

n n

                
   

, 

 

   n n n2
T 3 2 r 1 T

n n 
                 , 

 
  r rT T T 0     . (2.5)                     

 
Equation of Equilibrium: The radial equilibrium of an element of the spherical shell requires 
 

   rr
rr

dT
r 2 T T 0

dr     (2.6) 

 
where rrT  and T  are the radial and hoop stresses. For sufficiently small values of the pressure, the 
deformation of the shell is purely elastic.  
 
Boundary Conditions: The temperature field satisfying the Laplace Eq.(2.4) with the boundary condition is 
 
  0        and      rrT p       at      r = a, 
   (2.7) 
  0          and      rrT 0        at       r = b 
 
where 0  is constant, given by Parkus [12] 
                                                                       

   
0a b

1
b a r

      
. (2.8) 

 
Critical points or turning points: Using Eqs (2.5) and (2.8) in Eq.(2.6), we get a non- linear differential 
equation in   as 

 

        ( ) ( )
n 1 nn n n0

n n

cdP 2c
P P 1 P P 1 2 1 c P 1 P 1 1 0

d 2 r n

                    
 (2.9)                     

 
where  /00 0ab b a    , /c 2 2      and r P    (P is function of   and   is function of r). The 

transition points of   in Eq.(2.9) are P 0 , P 1   and P   . Here, we are only interested in finding 

plastic stresses corresponding to P 1  . 
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3. Determination of creep stresses and strain rates in spherical shell 
 
 For finding the creep stresses and strain rates, we discuss the transition of the spherical shell at 
P 1  . We define the transition function R through principal stress difference (see Deepak [13-14], 

Thakur [15-16], Sharma [17], Verma [18-19] ) at the transition point P 1  . The transition function R is 
given as 
 

  
   nrr nn T T

R P 1 1
2
       

 (3.1) 

 
where R is a function of r only .

  Taking the logarithmic differentiation of Eq.(3.1) with respect to r and substituting the value of 
/dP d  from Eq.(2.9) and taking the asymptotic value P 1  , after integration we get 

 

     exp
3 2c

2c n
rr 1R T T Ar 1 1 M




                        (3.2) 

 

where 1A  is constant of integration, which can be determined by using the boundary condition and  
 

  
 

0
2 n

c dr
M

2 r 1 1




     
 . 

 

 The asymptotic value of   as P 1   is G/r, G being a constant, therefore Eq.(3.2) becomes 
 

   exp
3 2c2c n n

rr 1R T T A r G r M
 

       .                 (3.3) 

 

 Substituting Eq.(3.3) into Eq.(2.6), we get 
 

   exp
3 2c2c 1 n n

rr 1 2T 2A r G r M dr A
                               (3.4) 

 

where 2A  is a constant of integration, which can be determined by using the boundary condition. Using 
boundary conditions in Eq.(3.4), we get  
 

  

   exp

1 b
3 2c2c 1 n n

a

p
A

2 r G r M dr
  





, 

 

     exp
3 2c2c 1 n n

2 1
r b

A 2A r G r M dr
  



     . 

 

 Substituting the value of constant 1A  and 2A  in Eqs (3.3), and (3.4), we get 
 

  

   

   
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exp

b
3 2c2c 1 n n

r
rr b
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r G r M dr

  

  

 



,                                                                  (3.5) 
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   

   

exp
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3 2c2c n n

rr b
3 2c2c 1 n n

a

pr G r M
T T T

2 r G r M dr

 

 
  

  


.                                                    (3.6)  

 
 Equations (3.5) and (3.6) give creep stresses for the spherical shell under the combined load of pressure 
and temperature 0 . We introduce the following non-dimensional components: brR / , /0R a b , 

/r rrT p  , /T p   , G 1 , and 0 1  . Equations (3.5) - (3.6) in a non-dimensional form become 
 

  

 

 

( )

( )

exp

exp

0

1
3n 2c n 1 1

1

R
r 1

3n 2c n 1 1
1
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R M dR

R M dR

   
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
, (3.7)    
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( ) ( )

( )

n 1
0

1 n

3 2c bR
M

n 1 D
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


. 

 
Fully-Plastic State: For a spherical shell made of an incompressible material ( /1 2   or C 0 ). Equations 
(3.7) and (3.8) become 
 

  

 
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0

1
3n 1

2

R
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2
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,                               (3.9)    
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where   
( )

( )

n 1
0

2 n

3 bR
M

n 1 D





. 

 
Estimation of creep parameters: Further the creep strain rates can be calculated for this thermo creep 
transition state of the spherical shell under internal pressure. For this purpose, the creep set in the strain 
should be replaced by creep strain rates and the stress-strain relations Eqs (2.3) become 
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  ij ij ij
1

e T
E E

 
                (3.11) 

 
where ije  is the strain rate tensor with respect to the flow parameter t. Differentiating the second equation of 

(2.2) with respect to time t, we get 
 

  n 1e 
    .                                               (3.12) 

 
For SWAINGER measure (i.e., n = 1), Eq. (3.12) becomes 
 
      (3.13) 
 
where   is the SWAINGER strain measure. From Eq. (3.1) the transition value   is given by 
 

     /
1 n1 n

rrn 2      .    (3.14) 

 
 Using Eqs (3.12)-(3.14) in Eq.(3.11), we get 
 

   rr rrk           , 

 

   rrk           , (3.15) 

 

   zz rrk            
 

where  
1

n
rr

n
k E

2 
 

    
 and rr    and zz  are strain rates tensor. 

 These are the constitutive equations used by Odquist [20] for finding the creep stresses and strain 
rates when we put n = 1/N. 
 
4. Numerical discussion about creep stresses and strain rates 
 
 For calculating creep stresses and strain rates based on the above analysis, the following values have 
been taken, Poisson ratio ν= 0.5 (incompressible material C 0 ), and 0.2 (compressible material .C 0 75 ), 

measure n = 1/3, 1/5, 1/8 (i.e. N = 3, 5, 8), . 35 0 10    deg 1F  , 0 0   and 01000 F , 1  = 0  = 0.00 
and 5 and D = 1. In the classical theory, measure N is equal to 1/n. The definite integrals in Eqs (3.7)-(3.8) 
have been evaluated by using Simpson’s rule. 
 Curves are plotted between creep stresses along the radii ratio R=r/b (see Fig.1) for the spherical 
shell made of a compressible as well as of an incompressible material. It is observed from Fig.1 that the 
sigma theta (hoop stress) has a maximum value at the internal surface of the spherical shell as compared to 
the sigma r (radial stress). 
 For measure n = 1/3 (see Fig.1a), it has been observed that the hoop stress has a maximum value at 
the internal surface of the shell for C=0.75 (compressible material) and with the introduction of the 
temperature this value increases further at the internal surface of the shell, whereas the value of radial stress 
lies between -1 to 1 due to boundary conditions for temp =0, 5. 
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 For measure n = 1/5, 1/8 (see Figs 1b, 1c), it is seen that the hoop stress has a maximum value at the 
external surface of the spherical shell and minimum at the internal surface of shell with C=0 (incompressible 
material) and this value is maximal for n = 1/8. The value of hoop stresses also increases with the 
temperature. The value of radial stresses lies between -1 and 1. 
 In Fig.2, strain rates are produced along the radii ratio R=r/b for the spherical shell made of a 
compressible as well as an incompressible material and notations err and eqq in Fig.2 represent strain rates 

rr  and  , respectively. It is seen that strain rates are maximum at the internal surface of the spherical shell 
for n = 1/3 as compared to n = 1/10. It is observed that the strain rates decrease at the internal surface of the 
spherical shell with the effect of temperature for n = 1/3, 1/8. It means that the possibility of damage of the 
spherical shell is maximum at the internal surface for n = 1/3. 
 

 
 

Fig.1a. Distribution of creep stresses in spherical shell under steady state temperature for n = 1/3. 
 

 
 

Fig.1b. Distribution of creep stresses in spherical shell under steady state temperature for n = 1/5. 
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Fig.1c. Distribution of creep stresses in spherical shell under steady state temperature for n = 1/8. 
 

 
 

Fig.2a. Distribution of strain rates in spherical shell under steady state temperature for n = 1/3. 
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Fig.2b. Distribution of strain rates in spherical shell under steady state temperature for n = 1/8. 
 
5.Conclusions 
 
 In this work, an analytical solution has been obtained for creep behavior of a spherical shell under 
combined effect of temperature and pressure. The concept of generalized strain measures and transition 
theory is employed to derive the expressions for creep stresses and strain rates. The effect of different 
parameters is studied. It is seen that the parameter n has a significant influence on the distribution of  creep 
stresses and strain rates. The circumferential stress is found to be maximum at the internal surface and 
external surface for n = 1/3 and n =1/5, 1/8 respectively. This indicates that the spherical shell made up of an  
incompressible material for n =1/8 is on safer side of design as compared to the shell made up of a 
compressible material for n =1/3. The main reason is that there exist more creep strains at the internal surface 
of the spherical shell  for measure n =1/3 and the possibility of damage increases near the interior portion of 
the spherical shell. It is further seen that under the effect of temperature, the significance of creep stresses is 
increased at the outer surface and inner surface of the spherical shell for different types of materials.  It 
signifies that the temperature reliant materials increase the possibility of rupture at the inner surface of the 
spherical shell. Thus compressibility and the thermal gradient enhance the value of circumferential stresses at 
the internal surface of the spherical shell. 
 
Nomenclature 
 
 a  inner radius of spherical shell 
 b  outer radius of spherical shell 
 iie   strain invariant 

 
A

ije   principal Almansi finite strain components 

 n   measure 
 P  function of β only 
 p   pressure 
 R  transition function 
 /oR a b   radii ratio 
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c=0, err ,temp=0 c=0, eqq

c=0.75, err c=0.75, eqq

c=0, err, temp=2 c=0, eqq

c=0.75, err c=0.75, eqq
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 , ,r     spherical co-ordinates 

 iiT   stress invariant 

 u, v, w  displacement components 
 Y  yield stress 
    coefficient of thermal expansion 
 β   function of r only 
 ij   Kronecker’s delta 

 ii  
 strain rates tensor 

    temperature 
 λ, μ  Lame’s constants 
 ν  Poisson’s ratio 
 rr   radial stress component  

    circumferential (hoop) stress component 
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