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The present article aims at investigating the effect of gravity modulation on chaotic convection of a 
viscoelastic fluid in porous media. For this, the problem is reduced into Lorenz system (non-autonomous) by 
employing the truncated Galerkin expansion method. The system shows transitions from periodic to chaotic 
behavior on increasing the scaled Rayleigh number R. The amplitude of modulation advances the chaotic nature 
in the system while the frequency of modulation has a tendency to delay the chaotic behavior which is in good 
agreement with the results due to [1]. The behavior of the scaled relaxation and retardation parameter on the 
system is also studied. The phase portrait and time domain diagrams of the Lorenz system for suitable parameter 
values have been used to analyze the system.  
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1. Introduction 
 
 The stability of a convective system depends upon the temperature difference. When the temperature 
difference in the fluid layer is large enough, the instability occurs in the system due to the buoyant force. 
This instability makes the system unstable and generates an interesting phenomenon known as convection. 
The Rayleigh-Bénard convection in a porous medium is called Darcy-Bénard convection or Horton-Rogers 
problem. Porous media have attracted many researchers during the last three decades due to applications in 
various fields such as petroleum industry, chemical engineering and geophysics, etc. For more details on the 
studies of porous media, one can refer to the most excellent books by Ingham and Pop [2], Nield and Bejan 
[3] and Vafai [4], etc. 
 In the present model, we consider gravity as a function of time (vertical time-periodic vibrations) 
known in the literature as gravity modulation or G-jitter which is collinear with actual gravity. This gives 
two parameters ( ,  ) to control the convective mechanism of the system. Therefore modulation (thermal, 
gravity, magnetic field) is quite an interesting area for research due to its controlling nature of convective 
system. Gresho and Sani [5] were the first who proposed the gravity modulated system. In this model they 
observed that gravity modulation enables the system to get control of its instability either by suitably 
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adjusting the values of frequency or the amplitude of modulation. For more details on gravity modulation, 
see [6-11]. 
 The study of Darcy-Bénard convection with viscoelastic fluid layer is more applicable than Newtonian 
fluid layer due to its growing importance in various fields such as petroleum, chemical, and reservoir 
engineering, etc. Industrial fluids are basically non-Newtonian fluids. First of all, Green studied the oscillatory 
convection in a viscoelastic fluid layer [12], the occurrence of overstability for typical Rayleigh-Bénard 
convection of a horizontal homogeneous Maxwellian fluid layer heated from below is reported by Vest and 
Arpaci [13]. Thermal instability in a rotating viscoelastic fluid layer was studied by Bhatia and Steiner [14]. In 
a horizontal porous layer based on the modified Darcy Oldroyd model, the critical conditions of non-oscillatory 
instability and oscillatory instability of a viscoelastic fluid were investigated by Kim et al. [15]. Malashetty and 
Kulkarni [16] used a two field model in the energy equation to investigate the thermal non-equilibrium problem 
of a Maxwell fluid in a porous medium. Linear and nonlinear analyses on the double-diffusive convection with 
the Soret effect in a Maxwell fluid-saturated porous medium were made by Wang and Tan [17]. A number of 
articles based on an oscillatory mode of convection were written by Bhadauria and Kiran [18-20]. These 
authors derived the complex Ginzburg-Landau equation for evaluating finite amplitude convection and in their 
model they derived the conditions which confirm the oscillatory flows. 
 Now-a-days many researchers have taken interest in the study of chaotic convection. Such type of 
convection is applicable in various kinds of fields, for instance, in the production of crystals and weather 
sciences, etc. The chaos model was proposed first of all by Poincaré [21]. In this model, the author found that 
the dynamical system generated by the three body problem is quite sensitive to the initial conditions 
exhibiting chaotic behavior. Later on, Lorenz [22] studied the system of three ordinary differential equations 
and developed the model for atmospheric convection; similar work has been done in [23]. Vadasz with their 
colleague presented a number of articles on the transition to chaotic behavior in a porous layer heated from 
below [24-28]. Sheu et al. [31] studied chaotic convection of a viscoelastic fluid in a porous medium. 
Recently, Vadasz [29], Bhadauria and Kiran [1, 30] studied chaotic convection in a porous medium by using 
different physical models. 
 Thus in the present article, chaotic convection of a viscoelastic fluid in a porous medium under 
gravity modulation is studied. This type of study helps to handle any kind of convective systems by using 
appropriate values of modulation parameters. First of all, the adopted model is reduced into a Lorenz system 
by employing the truncated Galerkin expansion method. The effects of convective parameters which are 
involved are studied numerically through phase portrait and time domain analyses. 
 
2. Mathematical structure of the problem 
 
 In this section, we consider an infinitely extended horizontal viscoelastic fluid layer of a porous 
medium depth d, confined between two parallel planes at z=0 (lower plane) and z=d (upper plane), which is 
heated from below as depicted in Fig.1. The Darcy law and Boussinesq approximation are used to solve the 
model equations. The governing equations of this model are [31] 
 

 
 

Fig.1. Physical configuration of the problem. 
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where the physical variables have their usual meanings as given in the nomenclature. The externally imposed 
gravitational field and the thermal boundary conditions are given by  
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where 0g  is the mean gravity and k̂  is the unit vector along the positive z-axis. 

 
3. Basic state 
 
 In the basic state the velocity and temperature profiles are given by  
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 Using Eq.(3.1) in Eqs (2.1), the following relations are obtained 
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 The dimensionless solution of Eq.(3.3) subject to the boundary conditions (2.3) is given by  
 
  .bT 1 z   (3.5) 
 
 Now, we superimpose finite amplitude perturbations on the basic state in the form  
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where the primes represent the perturbed quantities. According to Sheu et al. [31] and Bhadauria and Kiran 
[30] the dimensionless governing system is given by  
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 The above dimensionless system will be solved by considering stress free and isothermal boundary 
conditions  
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4. Method of solution 
 
 The solution of nonlinear Eqs (3.7) and (3.8) subject to the boundary conditions (3.9) is obtained by 
using the truncated Galerkin expansion method. The stream function and temperature field are taken in the 
forms as mentioned in [29] 
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 Using Eqs (4.1) and (4.2) into Eqs (3.7) and (3.8), multiplying the equations by orthogonal 
eigenfunctions corresponding to Eqs (4.1) and (4.2), and then integrating them over the spatial domain, yield 
a set of three differential equations for the time evolution of the amplitudes, in the form of  
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where the time has been re-scaled and the following notations are introduced  
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which provide the following set of equations  
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where mg  is the function of rescaled time  . If the amplitude of gravity modulation 0  , then the system 
(4.6) reduces into Sheu et al. [31] model. 

 
5. Results and discussion 
 
 MATHEMATICA 7.0 has been used for the numerical simulation of the Lorenz system (4.6). In this 
simulation, the initial conditions are =0: X=Y=Z=0.9, W=0.1 and the parameters   =10,   =0.5 are fixed. 

The parameters R, , , ,     are considered as variable to examine the effect of gravity modulation on the 
chaotic system. It is assumed that the amplitude of gravity modulation   is very small. The phase-portrait 
diagrams depict how modulation terms affect the dynamics of the thermal convection for a combination of 
varied parameters. Vadasz et al. [29] studied the effect of gravity modulation on chaotic convection for 
variable frequency   with constant amplitude  , while in this paper, these effects are studied for variable 
frequency   and amplitude  . The results are further depicted in Figs 2-7 to analyze the Lorenz model by 
using phase-portrait and time domain diagrams. 
 The effect of the scaled Rayleigh number R on the system is depicted in Figs 2a-2d, keeping fixed 
the other parameters. Figures 2a (R=5) and 2b (R=10) show a periodic solution but this periodicity of the 
system is not long lasting. Figure 2c (R=12) depicts a chaotic behavior or a periodic solution of the Lorenz 
system, which is due to the fact that heat transfer is larger on increasing R as is clear from the figures. 
Therefore, in case of gravity modulation the system shows periodic solution whenever R<12 (appox.) and 
show always chaotic behavior when R 12 , given in Fig.2d (R=75) compatible with the result of [31]. 
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Fig.2a. Phase portrait and time domain diagrams for the system (4.6) with parameters 
, . , R , . ,1 0 7 5 0 1 10         . 

 

 
  
Fig.2b. Phase portrait and time domain diagrams for the system (4.6) with parameters 

, . , R , . ,1 0 7 10 0 1 10         . 
 

 
 

Fig.2c. Phase portrait and time domain diagrams for the system (4.6) with parameters 
, . , R , . ,1 0 7 12 0 1 10         . 
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Fig.2d. Phase portrait time domain diagrams for the system (4.6) with parameters 

, . , R , . ,1 0 7 75 0 1 10         . 
 

 
  
Fig.3a. Phase portrait and time domain diagrams for the system (4.6) with parameters 

, . , R , . ,1 0 7 15 0 01 10         . 
  

 
  
Fig.3b. Phase portrait and time domain diagrams for the system (4.6) with parameters 

, . , R , . ,1 0 7 15 0 2 10         . 
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Fig.3c. Phase portrait and time domain diagrams for the system (4.6) with parameters 
, . , R , . ,1 0 7 15 0 3 10         . 

 
 The impact of amplitude of gravity modulation   on the system for different parametric values 
=0.01, 0.2, 0.3, keeping fixed other parameters, is depicted in Figs 3a, 3b, 3c, respectively. These figures 
show that the trajectories are much disturbed on increasing  . Therefore, the chaotic behavior advances, that 
is, the heat transfer increases gradually [1]. Figures 4a, 4b, 4c depict the effect of different frequencies of 
gravity modulation   =10, 100, 200, keeping fixed the other parameters. The phase-portrait diagrams and 
time domain solutions show that the system has a chaotic nature for   =10 while the system shows a 
periodic nature for  =100, 200. Thus, the system returns to periodic solution from the chaotic solution as 
  increases, and so, frequency of modulation   delays the heat transfer [1]. 
 The effect of the scaled relaxation parameter   can be seen in Figs 5a, 5b, 5c for its different values 
= 0.3, 0.35, 0.45, keeping fixed the other parameters, respectively. It is evident that on increasing   the 
disturbance in the solution the increases, which is depicted by phase-portrait and time domain diagrams. The 
system loses its periodicity and transfers into a chaotic solution, and so, heat transfer advances convection 
[1]. The scaled retardation parameter    shows an opposite effect of the scaled relaxation parameter  , and 
is depicted in Figs 6a, 6b, 6c for  = 0.5, 0.7, 0.9, keeping fixed other parameters. In this case, the system 
loses its chaotic behavior and shows a periodic behavior, and so, heat transfer delays convection [1]. 
 

 
 

Fig.4a.Phase portrait and time domain diagrams for the system (4.6) with parameters 
, . , R , . ,1 0 7 15 0 1 10         . 
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Fig.4b. Phase portrait and time domain diagrams for the system (4.6) with parameters 
, . , R , . ,1 0 7 15 0 1 100         . 

 

 
  
Fig.4c. Phase portrait and time domain diagrams for the system (4.6) with parameters 

, . , R , . ,1 0 7 15 0 1 200         . 
 

 
 

Fig.5a. Phase portrait and time domain diagrams for the system (4.6) with parameters 
. , . , R , . ,0 3 0 1 5 0 1 10         . 
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Fig.5b. Phase portrait and time domain diagrams for the system (4.6) with parameters 

. , . , R , . ,0 35 0 1 5 0 1 10         . 
 

 
 

Fig.5c. Phase portrait and time domain diagrams for the system (4.6) with parameters 
. , . , R , . ,0 45 0 1 5 0 1 10         . 

 
 Finally, we compare the result of gravity modulated and unmodulated systems. For   =0, R=1.1, 
Fig.7a shows a stable solution [31] while for =0.1, R=1.1, the system has periodic solution, depicted in 
Fig.7b. We noticed that in the gravity modulated system heat transfer is larger in comparison to the 
unmodulated system. 
 
6. Conclusions 
 
 In this paper, chaotic convection of a viscoelastic fluid in a porous medium under gravity modulation 
is studied. The adopted model is first reduced into a Lorenz system by employing the trauncated Galerkin 
expansion method. By using phase portrait and time domain diagrams the following findings are obtained  
a) The effect of the scaled Rayleigh number R is to increase the heat transport in the Lorenz system.  
b) The amplitude   (frequency  ) of modulation is to advance (delay) the heat transfer in the Lorenz 

system.  
c) The scaled relaxation parameter   has a tendency to advance the chaotic behaviour whereas the scaled 

retardation parameter   delays the chaotic behaviour in the system.  
d) Finally, it is obtained that heat transfer is larger in the modulated system in comparison to the 

unmodulated system. 
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Fig.6a. Phase portrait and time domain diagrams for the system (4.6) with parameters 
, . , R , . ,1 0 5 15 0 1 10         . 

 

 
 

Fig.6b. Phase portrait and time domain diagrams for the system (4.6) with parameters 
, . , R , . ,1 0 7 15 0 1 10         . 

 

 
 

Fig.6c. Phase portrait and time domain diagrams for the system (4.6) with parameters 
, . , R , . ,1 0 9 15 0 1 10         . 
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Fig.7a. 3D phase portrait and time domain diagrams for the system (4.6) with parameters 
, . , R . , ,1 0 1 1 1 0 10         . 

 

 
 

Fig.7b. 3D phase portrait and time domain diagrams for the system (4.6) with parameters 
, . , R . , . ,1 0 1 1 1 0 1 10         . 

 
Acknowledgement 
 
 The authors Ajay Singh and Manoj Kumar Singh gratefully acknowledge the financial assistance 
from BabasahebBhimraoAmbedkar University, Lucknow, India, in the form of a research fellowship. 
 
 
 



Chaotic convection of viscoelastic fluid in porous medium under G-jitter 49 

Nomenclature 
 
 d  depth of fluid layer 
 g   acceleration due to gravity 

 K  permeability 
 Tk   effective thermal diffusivity 

 L  length of porous layer 
 p  reduced pressure 
 R  scaled Rayleigh number 
 RaD   thermal Darcy-Rayleigh number 
 T  temperature 
  T  temperature difference across the porous layer 
 t  time 
 q  fluid velocity (u, v, w) 
 X  rescaled amplitude 
 Y  rescaled amplitude 
 Z  rescaled amplitude 
 T   coefficient of thermal expansion 

    heat capacity ratio 

    amplitude of gravity modulation 
 1   stress relaxation time 

 2   strain retardation time 

    dynamic viscosity of the fluid 

    kinematic viscosity 
    fluid density 

    rescaled time 
    porosity 

    stream function 

     frequency of modulation 

 2   Laplace operator  
 
Subscripts 
 
 B  basic state 
 0  reference value 
 
Superscripts 
 
 ’  perturbed quantity 
 *  dimensionless quantity 
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