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A mathematical model for MHD blood flow through a stenosed artery with Soret and Dufour effects in the 
presence of thermal radiation has been studied. A uniform magnetic field is applied perpendicular to the porous 
surface. The governing non-linear partial differential equations have been transformed into linear partial 
differential equations, which are solved numerically by applying the explicit finite difference method. The 
numerical results are presented graphically in the form of velocity, temperature and concentration profiles. The 
effects of various parameters such as the Reynolds number, Hartmann number, radiation parameter, Schmidt 
number and Prandtl number, Soret and Dufour parameter on the velocity, temperature and concentration have 
been examined with the help of graphs. The present results have an important bearing on the therapeutic 
procedure of hyperthermia, particularly in understanding/regulating blood flow and heat transfer in capillaries. 
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1. Introduction 
 
 The study of blood flow through arteries is of considerable importance in many cardiovascular 
diseases. The poor circulation of blood in our body due to blockage in arteries is a major cause of health 
risks. Arteries carry oxygenated blood with nutrients from the heart to each cell of the body, in the 
circulatory system of the human body. Blood is a thick red liquid circulating in the blood vessels. It has a 
strong nourishing effect on the human body and serves as one of the basic substances constituting the human 
body. Blood is a marvelous fluid which is an important factor of life. For the last few decades, the theoretical 
and experimental studies of blood flow through the circulatory system of living mammals, has been the 
subject of scientific research. A huge amount of literature is now available on the subject, e.g., [1–3], but 
little attention has been paid to the study of heat and mass transfer effects on blood flow through tapered 
arteries. Characteristics of blood flow through an artery in the presence of multi-stenosis were studied by 
Chakravarty and Sannigrahi [4] The investigation of basic BFD flow problems attracts interest due to the 
numerous proposed applications in bioengineering and medical sciences. 
 The study of bio-fluids under the presence of a magnetic field with dissipation finds its applications 
in various upcoming fields like innovative drug targeting, surgical operations, etc. Haik et al. [5] reported a 
30% decrease in blood flow rate when subjected to a high magnetic field of 10 T while Yadav et al. [6] 
showed a similar reduction in blood flow rate but at a much smaller magnetic field of 0.002 T. Sharma et al. 
[7] presented a mathematical model for the hydro-magnetic bio-fluid flow in the porous medium with Joule 
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effect. A theoretical analysis of blood flow and heat transfer in a permeable vessel in the presence of an 
external magnetic field was made by Sinha et al. [8]. Shit and Roy [9] studied the effects of induced 
magnetic field on blood flow through a constricted channel, and demonstrated that increasing the values of 
the magnetic field reduces the velocity of the blood flow at the center. Rahbari et al. [10] made an analytical 
study on blood flow containing nanoparticles through porous blood vessels in the presence of the magnetic 
field using the Homotopy Perturbation Method (HPM). Blood flow in a large blood vessel has a profound 
influence on the efficiency of thermal therapy treatment. Electromagnetic heat, such as short waves and 
microwaves, sends heat up to 2 inches into the tissue and muscles. It works best for injuries in joints, 
muscles, and tendons. Moreover, hyperthermia treatment has been demonstrated as effective during cancer 
therapy in recent years. Its objective is to raise the temperature of pathological tissues above cytotoxic 
temperatures (41–450C) without overexposing healthy tissues [11]. Heat and mass transfer of blood flow 
considering its pulsatile hydro-magnetic rheological nature under the presence of viscous dissipation, Joule 
heating and a finite heat source was discussed by Sharma et al. [12]. Sinha and Shit [13] investigated the 
combined effects of thermal radiation and MHD heat transfer blood flow through a capillary. Thermal 
radiation effect on inclined arterial blood flow through a non-Darcian porous medium with magnetic field 
was discussed by Sharma et al. [14 ]. Recently, Tripathi and Sharma [15] discussed the heat and mass 
transfer in MHD two-phase blood flow with radiation. 
 There are many important technological problems that concern the flow of chemically-reacting fluid 
mixtures. Many biological fluid systems are examples of such mixtures. For example, blood is a complex 
mixture of plasma, proteins, cells, and a variety of other chemicals that is modeled usually in a homogenized 
sense as a single constituent fluid. Blood is maintained in a delicate balance by a variety of chemical 
reactions, some that aid its coagulation and others its dissolution. Gnaneswara Reddy [16] reported the 
impacts of chemical reaction and thermal radiation on hydromagnetic convective boundary layer slip flow. 
Sharma and Gaur [17] studied the effect of variable viscosity on chemically reacting magneto-blood flow 
with heat and mass transfer. Recently, MHD third order blood flow in an irregular channel though a porous 
medium with homogeneous/heterogeneous reactions was discussed by Gnaneswara Reddy [18]. 
 When heat and mass transfer occur simultaneously in a moving fluid, the relations between the 
fluxes and the driving potentials are more intricate in nature. It is now known that the mass transfer caused 
by the temperature gradient is called the Soret effect, while the heat transfer caused by the concentration 
effect is called the Dufour effect. The Dufour effect was recently found to be of order of considerable 
magnitude so that it cannot be neglected (Eckert and Drake [19]). The Dufour and Soret effects on unsteady 
MHD mixed convection for a heat generating fluid with thermal radiation and chemical reaction was 
analysed by Sharma et al. [20, 21]. The Soret and Dufour effects on the magnetohydrodynamic (MHD) 
flow of the Casson fluid over a stretched surface were discussed by Hayat et al. [22].  Recently, Hayat et 
al. [23] and Sharma et al. [24] analysed the Soret and Dufour effects on MHD Jeffrey fluid flow in a curved 
channel and straight artery. 
 The main motivation for any mathematical analysis of physiological fluid flows is to have a better 
understanding of the particular flow being modeled. If there is a similarity between the results obtained from 
the analysis and experimental and clinical data, then the mechanism of flow can at least be explained. An 
accurate mathematical study can help explain the major contributing factors to many flows in the human 
body because peristalsis is evident in many physiological flows. When comparing results the mathematical 
model and the experimental data, it is desirable that the data obtained from experimental research be as close 
as possible to the actual physiological parameter being analyzed. In spite of all these studies, the Dufour and 
Soret effects on MHD blood flow through stenosed artery with thermal radiation and chemical reaction has 
received little attention. Hence, the main object of the present investigation is to study the importance of the 
Soret and Dufour effect in the presence of thermal radiation in blood flow. A Newtonian model of blood 
flow is taken for this study. Chemical reaction is also studied for the blood flow in the presence of mild 
stenosis in porous tapered artery 
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2. Problem formulation 
 
 Let ( , , )r z  be the cylindrical polar coordinate system with   r 0  as the axis of symmetry of the tube. 

Consider the flow of an incompressible Newtonian fluid of constant viscosity   and density    in a tube 

having length L , and take  u and w  as the radial and axial velocity components, respectively. The geometry 
of the stenosis is defined as Mekheimer and El Kot [25] 
 

           nn 1h z d z 1 b z a z a       
,       a z a b   , 

   (2.1) 
   h z ( )d z , otherwise                 

 
with     ,0d x d z   where ( )d z  is the radius of the tapered arterial segment in the stenotic region, d0  is 

the radius of the non-tapered artery in the non-stenotic region, is the tapering parameter, b  is the length of 
the stenosis, ( )n 2  is a parameter determining the shape of the constriction profile and referred to as the 

shape parameter (the symmetric stenosis occurs for   n 2 ) and a indicates its location (as shown in Fig.1). 
 

 
 

Fig.1. Model for stenosis. 
 
 The fluid is assumed to be slightly conducting, so that the magnetic Reynolds number is very small 
and the induced magnetic field is negligible in comparison with the applied magnetic field. It is also assumed 
that there is no applied voltage, so that electric field is absent. All the fluid properties are assumed to be 
constant except that of the influence of the density variation with temperature and concentration in the body 
force term. A first-order homogeneous chemical reaction is assumed to take place in the flow. 
 The equations governing the steady incompressible Newtonian fluid with energy and mass 
concentration equation are given as  
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Corresponding boundary conditions are given by 
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 Introducing following dimensionless parameters 
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and by adopting additional conditions (Mekheimer and El Kot [25]) 
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the dimensionless equations take the following form for the case of mild stenosis  
0
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with boundary conditions 
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3. Solution of the problem 
 
 The finite difference method is applied to solve dimensionless equations. First order derivatives are 
discretized by the forward difference method and second order derivatives are discretized by the central 
difference method. Variation in the radial direction is taken by varying i  and in the axial direction by 
varying j . Step size is chosen as 0.001. The discretized equations obtained are as follows  
 

  , , , , ,
,

,,

   
 

( )

i 1 j i j i 1 j i j i 1 j 2
i j2

i ji j

w w w 2w wp 1 1
M w

z r r Kr

                  
, 

  

  
   

, , , , , , ,

,

, , , , , , , , , ,

, ,

     
) EcPr  

( )

      

Sc

2
i 1 j i j i 1 j i j i 1 j i 1 j i j

2
i j

i 1 j i j i 1 j i j i 1 j i 1 j i j i 1 j i j i 1 j
f 2 2

i j i j

2 w w4 1
0 1

3R r r rr

2 21 1 1
D

r r r rr r

   

     

                         
               
   
    

 
, , , , ,

,

   
Sr   .i 1 j i j i 1 j i j i 1 j

r i2
i j

21
K

r r r

  


  
 
 

       
    
   

 

 

 These discretized equations are converted into algebraic equations by taking varying i  from 1 to 
( )h z  and j  is varied from 0 to 1. Algebraic equations form a tridiagonal matrix at every j  step and are 

solved by Thomas Algorithm in MATLAB. 
 
4. Results and discussion 
 
 Blood flow characteristics are computed for a specific set of values of the different parameters 
involved in the model analysis and are presented graphically. Various effects on Newtonian incompressible 
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blood flow in the presence of a magnetic field in a porous diverging tapered artery are observed. In order to 
get a physical insight, numerical calculations for the axial velocity, temperature, concentration for various 
parameters have been carried out. Values chosen for numerical solutions are .z 0 5 , , n 2

* , . , .0 0 005 0 6       and other dimensionless parameters are varied to understand blood flow behavior.  
In order to verify the accuracy of the present method, we have compared our results with earlier reported 
results for velocity considering magnetic and porous effects to be zero. The comparisons are found to be in 
good agreement, as shown in Tab.1. 
 
Table 1. Comparison of results. 
 

r   w (Present results) w  (Naddem et al. [26]) 

-1.0 0.000 0.000 

-0.8 0.302 0.303 

-0.6 0.538 0.535 

-0.4 0.700 0.703 

-0.2 0.809 0.802 

0.2 0.809 0.802 

0.4 0.700 0.703 

0.6 0.538 0.535 

0.8 0.302 0.303 

1.0 0.000 0.000 

 
5. Velocity profiles 
 
 The velocity profile for different values of M, K and   are shown in Figs 2 to 4. Velocity is found to 
decrease with an increase in the magnetic field, shown in Fig.2, as the magnetic field introduces Lorentz 
force in the electrically conducting fluid. This force acts against blood flow which reduces velocity with an 
increase in the magnetic field. These results qualitatively agree with the expectations, since the magnetic 
field exerts a retarding force on the natural convection flow. It is also observed that velocity increases with 
an increase in K as shown in Fig.3. Physically, this means that the porous medium impact on the boundary 
layer growth is significant due to the increase in the thickness of the thermal boundary layer. As expected, 
an increase in the permeability of the porous medium leads to the rise in the flow of fluid through it. When 
the holes of the porous medium become large, the resistance of the medium may be neglected. Variation 
due to a change in the tapering angle is shown in Fig.4, and it is seen that converging artery has higher axial 
velocity as compared to non-tapered and diverging artery. 
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Fig.2. Velocity profile for varying M. 
 

 
 

Fig.3. Velocity profile for varying K. 
 

 
 

Fig.4. Velocity profile for varying  . 
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6. Temperature profiles 
 
 Temperature profiles for different values of M, R, Pr, K, Df, Br(=Ec*Pr), Sr are shown in Figs 5 to 
10. Figure 5 shows the change in temperature when Br is varied. It is found that an increase in Br value 
increases temperature which also means there is a increase in temperature with an increase in the Eckert 
number as Br = Ec*Pr. Figure 6 shows the variation of temperature with K and it is found that as K increases 
the temperature of blood increases. It is observed from Fig.8 that the temperature of blood in the presence of 
stenosis decreases with an increase in the magnetic field. It is also observed that temperature increases with 
an increase in the radiation parameter R as shown in Fig.9. Radiation acts as a heat source within the blood, 
the arterial blood temperature (and hence also that along the centerline) should gradually increase with 
increasing radiation dosage. Variation of temperature with the Dufour number is shown in Fig.10. It is found 
that an increase in the Dufour effect increases temperature. Figure 11 shows variation of temperature with Sr. 
Changes are very small and temperature increases with an increase in Sr. 
 

 
 

Fig.5. Temperature profile for varying Br. 
 

 
 

Fig.6. Temperature profile for varying K. 
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Fig.7. Temperature profile for varying M. 
 

 
 

Fig.8. Temperature profile for varying R. 
 

 
 

Fig.9. Temperature profile for varying Df. 
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Fig.10. Temperature profile for varying Sr. 
 

7. Concentration profiles 
 

 Concentration profiles for different values of Sc, Sr, Br, M and Kr are shown in Figs 11-15. It is 
observed that with an increase in the Brickmann number Br, Schmidt number Sc and Soret number Sr the 
concentration profile decreases, while it increases with an increase in the magnetic field M and chemical 
reaction parameter Kr. As the Schmidt number increases, the concentration decreases. This causes the 
concentration buoyancy effects to decrease yielding a reduction in the fluid velocity. 
 

 
 

Fig.11. Concentration profile for varying Br. 
 

 
 

Fig.12. Concentration profile for varying Kr. 
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Fig.13. Concentration profile for varying M. 
 

 
 

Fig.14. Concentration profile for varying Sc. 
 

 
 

Fig.15. Concentration profile for varying Sr. 
 

8. Conclusions 
 
 MHD blood flow through a stenosed artery with Soret and Dufour effects in the presence of thermal 
radiation has been studied. The resulting equations were solved numerically by the finite difference 
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scheme. In order to check the accuracy and validate the present method, results are compared with the 
existing results. The effects of the thermal radiation, the magnetic field, Soret and Dufour parameters on the 
stenosis geometry have been observed throughout and the results obtained are of physiological interest and 
clinical applications. The study reveals that for patients undergoing thermal radiation therapy, the resistance 
to blood flow due to a magnetic field and stenosis is reduced by increasing the thermal radiation absorption. 
 
Nomenclature 
 
 Br  – Brinkmans number 
 Df  – Dufour number 
 Pr  – Prandtl number 
 M  – magnetic field 
 n  – shape parameter 
 p   – pressure 
 R   – radiation parameter 
 r   – radial direction 
 Sc  – Schmidt number 
 Sr  – Soret number 
 u   – radial velocity 
 w   – axial velocity 
 z   – axial direction 
    – tapering parameter 
    – dimensionless temperature 
    – dynamic viscosity 
 m   – magnetic permeability 

    – dimensionless concentration 
 1   – electrical conductivity 

    – dimensionless axial velocity 
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