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This paper deals with the numerical simulation of a turbulent flow around two-dimensional bodies by the 
finite volume method with non-orthogonal body-fitted grid. The governing equations are expressed in Cartesian 
velocity components and solution is carried out using the SIMPLE algorithm for collocated arrangement of scalar 
and vector variables. Turbulence is modeled by the k- turbulence model and wall functions are used to bridge the 
solution variables at the near wall cells and the corresponding quantities on the wall. A simplified pressure 
correction equation is derived and proper under-relaxation factors are used so that computational cost is reduced 
without adversely affecting the convergence rate. The numerical procedure is validated by comparing the 
computed pressure distribution on the surface of NACA 0012 and NACA 4412 hydrofoils for different angles of 
attack with experimental data. The grid dependency of the solution is studied by varying the number of cells of 
the C-type structured mesh. The computed lift coefficients of NACA 4412 hydrofoil at different angles of attack 
are also compared with experimental results to further substantiate the validity of the proposed methodology. 
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1. Introduction 
 

Turbulence being so ubiquitous in nature has its prominent influence in almost all practical flows, 
thus making its computation so important for applied mathematicians and engineers. 

However, the fluid mechanics phenomena in the turbulent flow regime are interesting and at the 
same time considerably more complicated. In addition to the inherent complicacies of the system of partial 
differential equations governing fluid flow, turbulence and geometric complexities of the domain give rise to 
further challenges. While turbulence may be dealt with using a suitable turbulence model, domain 
complexity may be circumvented using body fitted coordinates. In the past, various methods were employed 
to overcome these difficulties associated with numerical computation of turbulent flow in complex domains. 
Rhie [1] used finite volume method for the solution of two-dimensional incompressible, steady turbulent 
flows over airfoils using k   turbulence model and wall functions. Instead of staggered grids, the body 
fitted grid utilized a collocated arrangement of variables where the false pressure field was avoided by 
special momentum interpolation. Peric [2] developed a finite volume method for viscous flow in complex 
geometries, discretizing the governing transport equations in terms of Cartesian vector and tensor 
components and arbitrary non-orthogonal coordinates. 

Demirdzic et al. [3] provided a complete exposition of a finite volume approach to the calculation of 
turbulent flows. Karki and Patankar [4] presented a general calculation procedure for computing fluid flow 
and related phenomenon in arbitrary-shaped domains with physical covariant velocity components selected 
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as the dependent variables in momentum equations and the coupling between the continuity and momentum 
equations ensured using the SIMPLE algorithm.  
Majumdar [5] reported that solutions of steady-state problems from Rhie and Chow momentum interpolation 
are dependent on the underrealxation factor. Choi [6] reported that the solution using the original Rhie and 
Chow scheme is time step size dependent. He proposed a modified Rhie and Chow scheme for an unsteady 
problem which is quite similar to the scheme for a steady problem used by Majumdar. 

Moreover, Masuko and Ogiwara [7] carried out numerical simulation of viscous flow around ships 
having practical hull forms. The governing equations were discretized by finite difference approximation and 
solved with SIMPLE algorithm adopting the k   turbulence model and standard wall functions. Yu et al. 
[8] discussed different momentum interpolation practices for collocated grid systems. Mulvany et al. [9] 
carried out an assessment of two-equation turbulence models for high Reynolds number hydrofoil flows 
using the finite volume method and SIMPLE solution technique.  

Kuzmin and Mierka [10] presented a detailed numerical study of the k- turbulence model using 
algebraic flux correction to enforce the positivity constraint. Emphasis was laid on a new implementation of 
wall functions whereby the boundary conditions for k and  were prescribed in a weak sense. Demirdzic [11] 
discussed the discretization of diffusion term in finite volume continuum mechanics. Martınez et al. [12] 
proposed a possible correction for under-relaxation factor dependency in the Original Momentum 
Interpolation Method (OMIM).   

The aim of the present paper is to simulate the turbulent flow around two-dimensional bodies by the 
finite volume method with non-orthogonal body fitted grid. The k- turbulence model and wall functions are 
used to bridge the solution variables at the near wall cells and the corresponding quantities on the wall. The 
solution is carried out using the SIMPLE algorithm with a simplified pressure correction equation for 
collocated arrangement for scalar and vector variables. Despite using a simplified pressure correction 
equation to reduce computational cost, and facilitate the solution of linear systems, a satisfactory 
convergence rate is achieved by proper choice of under-relaxation factors. The pressure distribution and lift 
forces on the surface of the hydrofoils far away from the free surface are compared with the experiment and 
the agreement is found to be quite satisfactory which reflects the accuracy of the present numerical 
methodology. 
 
2. Mathematical modelling of fluid flow problem 
 
2.1. Governing equations 
 

In the Cartesian co-ordinate system, the steady two-dimensional turbulent flow around a hydrofoil 
for an incompressible fluid is governed by the following time-averaged equations 
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where u  and v  are the mean velocity components in the x  and y  directions, respectively,    is the fluid 

density,  P  is the mean pressure and    is the laminar viscosity. T  is the turbulent viscosity and is given by 
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where k  is the turbulent kinetic energy,   is the dissipation rate of k  and C  is a constant. In the k   

turbulence model, k  and   are governed by the following transport equations in the Cartesian coordinate 
system 
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where G  is the production of k  and is given by 
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The standard values of the constants in Eqs (2.4), (2.5) and (2.6) are as follows 
 
  ε ε ε. ,  ,  σ . ,  . ,  .  k 1 2C 0 09 1 1 3 C 1 44 C 1 92       . (2.8) 

 
Equations (2.1), (2.2), (2.3), (2.5) and (2.6) may be represented in the following generic form 
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where u  and v  are the mean velocity components,   is any generic dependent variable  , , ,u v k  ,   is an 

effective diffusion coefficient and R  is the source term. Note that for continuity equation 1  , 0  , 

R 0  , for u-momentum equation u , T  , 
P

R
x

 
 


 and so on. Considering the body fitted 

co-ordinate system, =  ( , )x y ,   ( , )x y as shown in Figs 1 (a and b) Eq.(2.9) can be transformed into 
the following form 
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are the contra variant velocity components. 
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( , )S    is the source term in ,   coordinates, J is the Jacobian of transformation and is given by 
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Now Eq.(2.10) is to be solved by satisfying the following boundary conditions in order to get the 

flow field around the hydrofoil.  
 

 
(a) Playsical domain                                   (b) Computational domain 

 
Fig.1. Co-ordinate system and C-type control volume. 

 
2.2. Boundary conditions 
 

Neglecting the effect of free surface, the boundary conditions for a flow field around a hydrofoil 
fixed in a stream of uniform velocity 0u  can be written as:  
(a) Inflow boundary: The components of the flow variables are provided as  

 
,  ,  ,  0 0 0u u v 0 k k      . 

 
(b) Outflow boundary: The outlet boundary is located far from the region of interest and the Reynolds 

number is high, the gradient in the flow direction is taken to be zero. Thus  
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where / n   is the derivative parallel to the streamlines; 

 
(c) Solid boundary: The no slip boundary condition is applied on the surface of the hydrofoil.  

 
,    ,   ,   u 0 v 0 k 0 0     . 

 
(d) Far-field boundary: The flow variables on the symmetry plane are prescribed as 

 
,   ,   ,   S P S P S Pu u v 0 k k      . 
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Moreover, as the standard k- turbulence model cannot be applied in the transition layer and also the 
viscous sublayer around the hydrofoil, the wall functions are to be adopted.  

 
3. The finite volume method 
 
3.1. Discretization of governing equation in body fitted coordinates 
 

The discretization is performed following a finite control volume approach in which the 
computational domain is divided into a number of contiguous quadrilateral cells. A collocated grid 
arrangement is used in which all the variables are stored at the geometric center of the cell. The locations of 
the various dependent variables and the associated cells for this grid configuration are shown in Figs 2 (a and 
b). Equation (2.10) is integrated over the volume of each cell in the computational domain as 
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 Applying Gauss’s divergence theorem to convert volume integrals to surface integrals, Eq.(3.1), after 
little rearrangement, may be written as 
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 The cross derivative terms have been added to the source term which in turn has been linearized as 
suggested by Patanker [13]. Using the notation of Fig.2, the following approximations may be made for the 
derivatives at face e: 
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 Analogous expressions may be derived for other faces. Using Eqs (2.11), (2.12), (2.13) and Eq.(3.3), 
Eq.(3.2) can be written as 
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 Central differencing is used to discretize the diffusion terms and suitable interpolation for the 
convective terms is required to express cell face values in terms of nodal values. This is achieved from 
Demirdzic and Peric [14] by blending second-order central (CDS) differencing and first-order 
unconditionally stable upwind differencing scheme (UDS) in a deferred correction manner 
 

  UDS CDS UDS
e e e

implicit explicit
             (3.5) 

 
where   is the blending factor having value between 0 to 1. The explicit part in Eq.(3.5) is obtained from 
previous iteration and added to the source term, like the cross derivative terms. Using the above scheme for 
convective terms and after little manipulation, Eq.(3.4) can be written in the following algebraic form 
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 Introducing an under-relaxation factor to slow down changes of the dependent variable in 
consecutive iterations, Eq.(3.6) becomes 
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 The terms inside the third bracket correspond to the continuity equation. After outer iteration steps, 
the mass fluxes are corrected so that the bracketed term vanishes identically and, therefore, are not 
considered. 
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P W n s P W n sw w
w
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N

x x y y x x y y

     


    
, 

 

  
      
      

N P e w N P e wn n
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N P e w e w N Pn n

x x x x y y y y
N
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     


    
, 

 

  
      
      

P S e w P S e ws s
s

P S e w e w P Ss s

x x x x y y y y
N

x x y y x x y y

     


    
, 

 
and the volume (area in 2D) of the cell V around the node P as indicated in Fig.2a is  
 

       e w n s n s e wV x x y y x x y y        = 

       ne sw nw se ne sw nw se
1

x x y y y y x x
2
         

 
m
P  denotes the value of the dependent variable from the previous iteration and   is the under relaxation 

factor. 
 



394  Md Shahjada Tarafder and M.Al Mursaline 

 
(a) Physical plane                            (b) Computational plane 

 

Fig.2. Collocated grid arrangement. 
 
3.3. The wall functions 
 

To close the statement of the problem, we still need to prescribe the tangential stress as well as the 
boundary conditions for k and ε on the solid boundary. Note that the equations of the k   model are invalid 
in the vicinity of the wall where the Reynolds number is rather low and viscous effects are dominant. In the 
case of laminar flow, the no-slip wall boundary condition is directly applied at the wall. For turbulent flows 
however, to avoid using finer grids near walls, where steep cross flow gradients exist, ‘wall functions’ are 
used. These wall functions are given as follows 

 

 ln

11
24

t P
w

P

v C k

1
En






 



 (3.9) 

where 
11
24

PP
P

C k n
n  




, 

 

tv  is the wall parallel velocity and Pn  is the distance of the first computational node normal to the wall. 
1 1
4 2

p
P w

p

C k
G

n
 


, (3.10) 

 

3 3
4 2

p
P

p

C k

n
 


. (3.11) 

 
4. Solution by SIMPLE algorithm 
 

To obtain velocity and pressure fields and values of turbulent quantities, an iterative solution 
procedure akin to the SIMPLE method (Patankar and Spalding [16]) is used. In the present work the scalar 
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and vector variables are stored in a collocated manner. Using Eq.(3.8), the momentum equations in the x  
and y  directions may be written as 
 

       P
P nb nb u e w n s n s e w

u

a
u a u S P P y y P P y y

 
         
 , (4.1) 

  

       P
P nb nb v e w n s n s e w

v

a
v a u S P P x x P P x x

 
         
 . (4.2) 

 The pressure terms have been removed from the source terms in the above equations for 
convenience. Equations (4.1) and (4.2) may be written in the following matrix form. 
 
      u uA u S , (4.3) 

 
      v vA v S  (4.4) 

 
where  u , v  denotes the field of the unknown nodal velocity field arranged in vector form,  S  is a 

similar column vector containing source terms and  A  is the coefficient matrix. For the ( )thm 1  outer 

iteration, the matrix  uA  and column vector uS  are obtained using the tentative values of the parameters 

, , , ,m m m m mu v k P . These parameters superscripted by m are either initial guesses or solution of the 

governing equations at the thm  outer iteration. Once matrix  uA  and column vector uS  are assembled, the 

system of equations represented by Eq.(4.3) is solved within the inner iteration loop by the strongly implicit 

procedure of Stone [17]. The velocity field *u , obtained in this manner satisfies the following equation 
 

      *
u uA u S . (4.5) 

 The asterisk is used to indicate that the computed velocity field satisfies momentum but not 

necessarily continuity equation. Similarly, *v  satisfies the following system 
 

      *
u vA v S . (4.6) 

 However, the success of the SIMPLE algorithm in case of collocated arrangement of variables 
depends on the interpolation of nodal velocities to obtain face velocities and hence mass fluxes. To avoid 
false pressure field special interpolation technique suggested by Rhie [1] is employed which leads to the 
following u  velocity at face e  
 

     
*

* nb nb P m m
e u u n s E Pe

P ee
p

a u B 1
u y y P

aa
P

   
     
 

 
 

  (4.7) 

where PB  is the source term excluding pressure gradient across the cell. The over bar denotes linear 

interpolation between two neighboring nodes which for an arbitrary quantity g  is given by 
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   e eg f g 1 f g     (4.8) 

where  

  e

Pe

eE
f

Pe
 


. 

 
 Similarly, velocities at other faces may be obtained in both x  and y  directions. The mass fluxes 
obtained from these face velocities are not guaranteed to satisfy the discrete continuity equation. That is 
 

  * * * * e w n sF F F F 0    , (4.9) 
 

  * * * * e w n s mF F F F S    . (4.10) 
 
Consequently, the face velocities are corrected in the spirit of the SIMPLE algorithm as follows 
 

  * '
e e eu u u  , 

  

   
 
     
' '

* ' 'n s
e

e e u e w u n s E Pe e
P Pe e

p p 1
u u y y y y p p

a a

  
        

 
, (4.11) 

  

  * '
e e ev v v  , 

  

   
 
     
' '

* ' 'n s
e

e e v e w v n s E Pe e
P Pe e

p p 1
v v x x x x p p

a a

  
        

 
. (4.12) 

 
Using Eqs (4.11) and (4.12) the mass flux at face e  is found to be 
 

         ' ' ' '2 2
e u n s E P v n s E Pe e

P Pe e

1 1
F y y p p x x p p

a a

                
     
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     
 
     

 
 

' ' ' '
n s n s

e e
u e w n s v n s e we e e e

P Pe e

p p p p
y y y y x x x x

a a

           
 
 

+ (4.13) 

    * *             e n s e n se e
u y y v x x      .  

 
 Neglecting the second term (cross-diffusion term) of Eq.(4.13) based on the recommendation of 
Peric [15] we get 
 

  
     

   

' '

* * .

2 2
e u n s v n s E Pe e

P Pe e

e n s e n se e

1 1
F y y x x p p

a a

u y y v x x

                 
     

     

 (4.14) 
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Similarly, we can write for other faces 
 

  
     

   

' '

* * ,

2 2
w u n s v n s P Ww w

P Pw w
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1 1
F y y x x p p
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u y y v x x

                 
     

     

 (4.15) 
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 (4.16) 
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 (4.17) 

 
 Substituting Eq.(4.14) to Eq.(4.17) in discretized continuity Eq.(4.18) for incompressible flow the 
pressure correction Eq.(4.19) is derived after algebraic manipulation 
 
   e w n sF F F F 0    , (4.18) 
 

  ' ' ' ' '
P P W W E E N S S N ma p a p a p a p a p S      (4.19) 

where 
  P W E N Sa a a a a    , 

 

     2 2
E u n s v n se e

P Pe e

1 1
a y y x x

a a

               
     

, 

 

     2 2
W u n s v n sw w

P Pw w

1 1
a y y x x

a a

               
     

, 

 

     2 2
N u e w v e wn n

P P nn

1 1
a y y x x

a a

               
     

, 

 

     2 2
S u e w v e ws s

P Ps s

1 1
a y y x x

a a

               
     
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 Pressure corrections are obtained by solving Eq.(4.19) by ILU decomposition method of Stone [17]. 
These pressure corrections may be in turn used to correct mass fluxes, nodal velocities and pressure as 
follows 
 

  

   

     

* *

' ' ,

m 1
e e n s e n se e
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1 1
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 (4.20) 

 

     * ' 'm 1
P P u n s E Pe

P e

1
u u y y p p

a
  
    

 
, (4.21) 

 

  'm 1 m
pP P p    . (4.22) 

 
 Since the flow is turbulent, the system of Eqs (4.23) and (4.24) for k  and   are solved next by 

strongly implicit procedure of Stone [17] to yield the quantities m 1k   and m 1  which mark the completion 

of the ( )thm 1  outer iteration 
 
      k kA k S , (4.23) 

 
      ε εA ε S . (4.24) 

 

The obtained flow variables , , , ,m 1 m 1 m 1 m 1 m 1u v P k      act as ‘initial guesses’ for the ( )thm 2
outer iteration and the whole process described above is repeated until the convergence criterion is met. 
 
6. Convergence criteria  
 

Starting from initial guess for all field values the process of solving the equations is repeated until 
convergence. Due to coupling of variables and the nonlinearity of the equations, it is not necessary to solve 
exactly the discretized equations for a given set of coefficients (inner iteration); these are only approximate 
and need to be updated. So, inner iterations of momentum equations and equations of turbulent quantities are 
terminated by limiting the number of iteration to 1. Convergence of the pressure correction equation is 
monitored by comparing the sum of the absolute residuals after each sweep to its initial value. 

For outer iterations (solution with updated coefficients), the sum of the absolute values of the 

residuals over all control volumes is calculated, and normalized by inlet flux of the relevant quantity, inletf . 

That is 
K

l

l 1
inlet

R

R
f










. 

 

For convergence of outer iteration to take place the following must be satisfied 
 

 max , , , ,u v 1 kR R R R R   . 
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The above criterion ensures that the relative changes in the variables from one iteration to the next 
are of the order of   or less.  

 
7. Results and discussion 
 

The turbulent flow over NACA 0012 and NACA 4412 hydrofoil forms a fascinating amalgam of 
fluid mechanics phenomena and its analysis has been carried out in the present work.  
 

7.1. NACA 0012 hydrofoil 
 

The flow past an NACA 0012 hydrofoil with 2.5 m chord length (C) is simulated at . 6
cRe 2 8 10   

with grid sizes of , , 50 14 88 20 176 40    and , , 0 6 10  degrees of incidence. A typical grid arrangement 

for 176 40  cells is shown in Fig.3. In the present simulation the inlet boundary at the front of the foil along 
with the upper and bottom boundaries are located 4 chord lengths away from the leading edge. The outlet 
boundary at the rear side is 8 chord lengths away from the leading edge. The under-relaxation factors used 
are .u v k 0 7       ε , .p 0 1   and the value of blending factor is .0 5  . 

 

 
 

Fig.3. Grid arrangement for  176 40  cells. 
 
A comparison of obtained pressure coefficients with its experimental results for each angle and a 

grid size of 176 40  is shown in Figs 4a, b, c. From these figures it is evident that the computed results 
agree very well with the experiment. In fact, at 0 and 6-degree incidence the result agrees better than that 
obtained by Rhie [1] near the leading edge. However, discrepancy can be noted at the leading and trailing 
edges which may be attributed partly to inadequate turbulence modeling. Moreover, the mesh may not be 
sufficiently fine to capture the very strong gradients existing in those regions. In addition to the pressure 
coefficient curves, the pressure contours and streamlines at 6 degrees incidence are shown in Figs 5 and 6 for 

a grid size of 176 40  at . 6
cRe 2 8 10  . 
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(b) Angle of attack 6 degree 
 

0.0 0.2 0.4 0.6 0.8 1.0
1

0

-1

-2

-3

-4

-5

-6
NACA 0012
No. of grid points: 176x40

 10 degree

Rec  2.8x106

 Present result
 Experiment by

          Gregory et al.(1970)

C
p

x/c  
 

(c) Angle of attack 10 degree 
 

Fig.4.  Surface pressure distribution for NACA 0012 hydrofoil at (a) 0 degree (b) 6 degree and (c) 10 degree 
angle of incidence. 
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Fig.5. Pressure coefficient contours for NACA 0012 hydrofoil at 6 degree incidence. 
 

 
 

Fig.6. Streamlines for NACA 0012 hydrofoil at 6 degree incidence. 
 
The C type structured mesh with three different sizes was isused to investigate the influence on 

surface pressure coefficients. At 10 degree angle of attack, pressure coefficients are computed at each of the 
three grids and plotted in Fig.7. It is evident that refinement of the grid gives increased numerical accuracy 
of pressure coefficients in the present case. Significant improvement is found on the suction side of the 
hydrofoil. However, the effect on the pressure side (where the discrepancy is small) is less considerable.  
The improvement in result is particularly marked at the point of the lowest pressure coefficient near the 
leading edge. The percentage errors compared to experimental findings at this point for , 50 14 88 20   and 

176 40  are found to be 50.0%, 33.0% and 16.6%, respectively. There is a reduction in discrepancy because 
the steep gradients could be better resolved by the finer meshes. It may be also observed that improvement in 
regions other than the leading edge seems to be less marked when the grid size is increased from 88 20  to 
176 40 . So at a grid size of 176 40 , the solution tends to become grid independent except at the leading 
edge. The slight error incurred in these regions for the most refined grid may therefore be attributed to 
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inadequate turbulence modeling. The effect of angle of attack for 176 40  grid is also studied by plotting 
the pressure coefficients at 0, 6 and 10 degree on the same axes as shown in Fig.8.  
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Fig.7. Grid dependency for NACA 0012 hydrofoil at 10 degree angle of incidence. 
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Fig.8. Effect of angle of attack on the pressure distribution for NACA 0012 hydrofoil. 
 
7.2. NACA 4412 hydrofoil 
 

Turbulent flow past NACA 4412 hydrofoil with 2.5 m chord length (C) is analyzed using a method 
similar to that of NACA 0012. In this case the first mesh consists of 76  cells in the   direction and 20  in 

the   direction  76 20  with 1520 cells in total. The subsequent finer meshes have sizes of  134 25  and 

 268 50  with 3350 and 13400 cells, respectively. 

The pressure coefficients are computed at . 6
cRe 3 1 10    and compared with Pinkerton [18] for a 

268 50  C type structured grid as shown in Figs 9a, b, c, d. Since Pinkerton’s experiment is for three 
dimensional flows, comparisons are made at effective angles of attack. The effective angles of attack for 1.2 
degree, 2.9 degree, 6.4 degree and 10 degree are obtained according to Pinkerton [18] by subtracting the 
theoretically calculated induced angle of attack from the geometric angle of incidence. From the curves it can 
be seen that, at all the angles of attack, the agreement on the pressure side is excellent with slight discrepancy 
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on the trailing edge. Discrepancy is more notable on the suction side, particularly near the leading edge. For 
2.9 and 6.4 degree angle of incidence, little discrepancy also exists between /x c  of 0.1 to 0.3 which is 
believed to occur partly due to error incurred in calculating the effective angle of attack by Pinkerton [18].  
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(a) Angle of attack 1. 2 degree 
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(c) Angle of attack 2.9 degree 
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(d) Angle of attack 6.4 degree 
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(d) Angle of attack 10 degree 
 

Fig.9. Pressure coefficients for NACA 4412 hydrofoil for (a) 1.2 degree (b) 2.9 degree (c) 6.4 degree and  
(d) 10 degree angle of incidence. 

 
The pressure coefficients at an angle of attack 10 degree are plotted in Fig.10 for three grid sizes on 

the same axes at . 6
cRe 3 1 10  . It is evident that refinement of the grid gives increased numerical accuracy 

of pressure coefficients for NACA 4412 hydrofoil as well. However, except near the leading edge, the 
pressure coefficient values are seen to be affected very little when mesh size is increased from 134 25  to 
268 50 . The pressure coefficient values therefore exhibited grid independency when the finest mesh was 
employed. So, the very small amount of discrepancy extant with the most refined grid may have resulted due 
to inadequate modeling of turbulence and perhaps inaccuracy in the effective angle values. The effect of 
angle of attack for a mesh size of 268 50 is plotted in Fig.11. In addition, the lift coefficient is computed 
and validated in Fig.12 against the experimental results of Coles and Wadcock [19] and Kermeen [20]. Using 

a 268 50  grid size, flow over NACA 4412 hydrofoil is also simulated at . 6
cRe 3 1 10   at 13.9 degree 

incidence. The pressure coefficients on both suction and pressure side are computed and compared with 
Coles and Wadcock [19] as shown in Fig.13. Streamlines and velocity contours showing the separation near 
trailing edge are drawn in Figs 14 and 15 for 13.9 degree incidence. Despite the doubt in applicability of the 
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k-ε turbulence model in separated regions, the pressure coefficients agreed quite well. However, discrepancy 
in pressure coefficient values exists near the leading edge and trailing edge. Also the error on the suction side 
of the hydrofoil is more considerable than the pressure side and the flow separation occurs earlier than found 
in the experiment. The pressure computed on the suction side is less negative compared to Coles and 
Wadcock [19]. This may overestimate the adverse pressure gradient resulting in early flow separation. Figure 
16 shows the convergence history for NACA 0012 and NACA 4412 hydrofoils at 10 degree incidence which 
illustrates the satisfactory convergence rate for both NACA 0012 and NACA 4412 despite the use of a 
simplified pressure correction equation.   
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Fig.10. Grid dependency of pressure coefficients for NACA 4412 hydrofoil at 10 degree angle of 
incidence. 

 

0.0 0.2 0.4 0.6 0.8 1.0
1

0

-1

-2

-3
NACA 4412
Grid size: 268x50

Rec = 3.1x10
6

 = degree
 =degree
 =degree
 =10 degree

C
p

x/c  
 

Fig.11. Effect of angle of attack on pressure coefficients for NACA 4412 hydrofoil. 
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Fig.12. Lift coefficients for NACA 4412hydrofoil. 
 

0.0 0.2 0.4 0.6 0.8 1.0
1

0

-1

-2

-3

-4

-5

-6

-7
NACA 4412
=degree 
No. of grid points: 268x50

Rec =1.5x10
6

 Present result
 Experiment by Coles and

             Wadcock (1979)

C
p

x/c  
 

Fig.13. Pressure coefficients for NACA 4412 at 13.9 degree incidence. 
 

 
 

Fig.14. Streamlines for NACA 4412 at 13.9 degree incidence. 
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Fig.15. u-velocity contours for NACA 4412 at 13.9 deg incidence. 
 

 
Fig.16. Convergence history. 

8. Conclusions 
 

This paper presents the numerical computation of turbulent flow past hydrofoils using the finite 
volume method with a k   turbulence model. The following conclusions can be drawn from the present 
numerical study: 

a) The surface pressure distributions on a number of hydrofoils such as NACA0012 [21] and 
NACA4412 located far from the free surface are computed and then compared with the theoretical as 
well as experimental data. The agreement with established data is found to be excellent except very 
close to the leading edge. 

b) Grid refinement is carried out systematically keeping a proper distance between the first 
computational node and the wall. Significant improvement in results has been obtained with a 
refined grid particularly near the leading edge. 

c) Despite simplifying the pressure correction equation by neglecting cross-diffusion contributions, 
proper under-relaxation factors may be used so that computational cost is reduced without adversely 
affecting the convergence rate. 
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d) Lift coefficients are computed which exhibit an excellent agreement with experimental data at lower 
angles of attack. However, due to poor performance of the k   turbulence model, at higher angles 
of attack when flow separation takes place, the agreement is found to be less satisfactory.  
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Nomenclature 
 
 , , , ,P E W N Sa a a a a   coefficients in the algebraic transport equation 

 C  chord length of hydrofoil 
 LC   lift coefficient 

 PC   pressure coefficient 

 C , C1 , C2  constants in the k-ε turbulence model 
 , , , e w n sD D D D   diffusion coefficients 

 F  mass flux 

 ef
   linear interpolation factor 

 G  production of turbulent kinetic energy 
 k   turbulent kinetic energy 
 J   Jacobian of transformation 
 , , , e w n sN N N N   cross diffusion coefficients  

 n  direction normal to a boundary 

 n   dimensionless normal distance in the law of the wall 
 P  pressure 
 Re  Reynolds number 
 R   source term in Eq.(2.9) 

 R   normalized residual for   

 S   source term in Eq.(3.7) 

 mS   source term in the pressure correction equation 

 U  contra variant velocity component 
 u  x  component of velocity 
 u   shear velocity 

 u   dimensionless velocity in the law of the wall 
 V   contra variant velocity component 
 V   cell volume 
 v   y  component of velocity 

 , x y   Cartesian coordinate system 

    angle of attack 
 , ,     transformation parameters 

    under-relaxation factor 

    generic diffusion coefficient in Eq.(3.1) 
    turbulent kinetic energy dissipation rate 
    constant in the law of the wall 
 λ   blending factor for convective scheme 
    dynamic viscosity  

 T   turbulent viscosity coefficient 
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 ,     body-fitted coordinate system 

    density 

 k ,   constant in the k-ε turbulence model 
 w    wall shear stress 

     generic transport variable 
     convergence criteria for outer iteration 
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